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Chapter 1. Introduction 1.1. Preamble

1.1 Preamble

The increasing availability of data sets and the multiplication of sources offer hopes for
understanding, interpreting and predicting many phenomena. However one of the ironies of
the so-called “big data” era is that missing data are unavoidable: the more data there are, the
more missing data there are. Indeed, missing data can occur for many reasons: unanswered
questions in a survey, lost data, sensing machines that fail, aggregation of multiple sources,
etc. Classical statistical methods can not be directly applied on the datasets which contain
missing values. A naive solution is then to delete the missing values: either the incomplete
variables or the missing individuals, i.e. either some columns or some rows of the dataset.
However, deleting data is not a solution in most cases for two main reasons: (i) this is only
possible if there is little missing data, otherwise the loss of information is too great and (ii)
the kept observations can constitute a sub-population which is not necessarily representative
of the overall population leading to bias in subsequent analyses. In general, this strategy
is not suitable: (i) it is rare that only a few variables or individuals contain missing data
and (ii) the case where a sub-population is representative of the general population is a
toy case, as most of the time the process that causes the data to be missing depends on
the data values themselves. For example, rich people are often less inclined to reveal their
income. In this dissertation, we are interested in developing methods for handling large scale
data with heterogeneous types of missing values, different natures of variables and different
percentages of missing values in each variable. More particularly, our work is motivated by a
public health application with a clinical register presented below.

1.1.1 Motivation: the Traumabase® dataset

Major trauma, i.e. injuries that endanger a person’s life or functional integrity (such as road
accidents, interpersonal violence and falls) have been qualified as a worldwide public health
challenge and a principal source of mortality in the world by the World Health Organization
(Hay et al., 2017). This is particularly striking in the group of people aged between 16 and
45 years for whom major trauma is the leading cause of death. A patient who has just
suffered a trauma is first taken care of at the scene of the accident, then transferred to the
hospital in an ambulance and finally treated in the emergency services of a medical center.
This highly stressful environment involving many carers can lead to delays or errors in the
decision making, with high risks for the patient. Hamada et al. (2014) and Hamada et al.
(2015) showed that the patient management often exceeds acceptable time frames and that
diagnoses can differ in the ambulance and at the arrival at hospital. As efficient and timely
trauma management is crucial to improve patient care, 19 French trauma centers have been
working together since 2012 to collect high-quality clinical measurements (250 variables) on
20,000 traumatized patients from the scene of the accident to the hospital admission.

This tabular dataset contains heterogeneous clinical measurements, with both categorical
variables (sex, type of illness,...) and quantitative variables (blood pressure, hemoglobin
level...). There is a high percentage of missing values in most of the variables (in the whole
dataset, 80% of the individuals have missing values). Missing values can be due to the
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aggregation of datasets from multiple hospitals, which typically gathers different observations
on patients, or to failures of the measuring devices, or to the fact that doctors may not have
time to accordingly measure health variables in emergency situations, or the missing values
can be informative in the sense if the state of the patient is such that it was not possible
to make the measurement. Both percentage and nature of missing data demonstrate the
importance of taking appropriate account of missing data. In any case, being able to handle
missing values can also avoid the unnecessary effort of collecting new complete observations,
which is unfeasible in view of the financial and time costs this would entail.

Our aim is to assist doctors for their decision making in emergency situations. For example,
given one patient’s pre-hospital features, could we predict the risk of an hemorrhagic shock?
This falls within the scope of supervised learning, as the goal is to carry out predictive
models as regression or classification ones in presence of missing data. Another example of
statistical analysis that doctors would like to conduct on such data, is to identify relevant
groups of patients sharing similarities. Formally, this is a task of unsupervised learning that
should be processed in presence of missing data. Another burning issue is that of imputation.
Indeed, it would also be useful to judiciously replace each missing entry in the Traumabase
by a plausible value. By doing so, we would obtain a complete dataset, on which usual
statistical methods could be applied, although this may be too simplistic in some cases.

1.1.2 Outline of the introduction

Rubin (1976) laid the foundations of the missing-data formalism that is still used nowadays.
Since then, one could point out the review works by Schafer (1997); Kim and Shao (2013);
Molenberghs et al. (2014); Van Buuren (2018); Little and Rubin (2019) that provide a
complete introduction to the main concepts and methods related to missing values. The
choice of a method to deal with missing values depend on both (i) the missing-data pattern,
which indicates where the missing data are and (ii) the missing-data mechanism which
answers the difficult question why the data are missing. Section 1.2 presents these two
key ingredients of the missing-data analysis: Section 1.2.1 defines the missing-data pattern
and Section 1.2.2 the missing-data mechanism. Section 1.2.3 gives the main result of the
missing-data analysis, which explains why the cause of the lack of data is so important to
consider in some cases, when the missing-data mechanism is said nonignorable.

In addition to depending on the missing-data type, the method to choose also depends
on the purpose of the statistical analysis. The learning procedure in presence of missing
values can be of different natures such as imputing missing data, estimating parameters of an
underlying model or predicting a target variable with missing covariates, etc. This dissertation
mainly focuses on the inferential framework, when the goal is to perform parametric model
estimation from incomplete data. In Section 1.3, a summary of the main techniques to deal
with missing values in the inferential framework is given, assuming that the missing-data
mechanism is ignorable. In Section 1.3.1, we discuss the complete-case analysis, when the
missing values are deleted, which, despite an appealing simplicity, suffers from strong flaws.
Section 1.3.2 presents the Expectation Maximization (EM) algorithm (Dempster et al., 1977),
which allows to modify the estimation strategy to apply it to an incomplete dataset. Section
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1.3.3 focuses on the methods which consist of imputing missing values to get a complete
dataset (on which classical algorithms could then be applied for example to estimate some
parameters). Section 1.3.4 is devoted to specific methods which impute naively the missing
values and then adapt classical algorithms to account for the imputation error. In Section
1.3.5, the previously introduced methods are discussed and put into perspective.

In Section 1.4, three statistical frameworks are discussed, which call for specific methods
when missing data occur. Section 1.4.1 aims to introduce the linear regression with
missing covariates, i.e. when there exists an outcome variable linearly related to the
covariates. The literature considered focuses on estimating the linear regression parameters
or selecting relevant variables in the high-dimensional setting. Section 1.4.2 deals with
supervised learning, when the data are labeled, i.e. there exists an outcome variable, and the
goal is to know how to predict outcomes for new observations. Note that linear regression
can be considered a special case of supervised learning, but the objectives differ (parameter
estimation in the first case, prediction in the other). Finally, Section 1.4.3 focuses on
unsupervised learning, when the data are unlabeled and the aim is to partition the data into
different groups that make sense.

The classical methods to deal with missing data presented in Sections 1.3 and 1.4 are only
valid under the assumption that the missing-data mechanism is ignorable and lead to bias if
it does not hold. Nevertheless, these missing-data scenarios are often unrealistic and too
restrictive. The MNAR mechanism, which encompasses the nonignorable mechanisms, allows
to model a large variety of situations, because the missingness may depend on both observed
and missing variables, and is often much more appropriate for real datasets. Indeed, the cause
of the missing values for a variable is often related to the values of other missing variables or
its values itself. For example, in the Traumabase dataset, the doctors can have no time to
make the clinical measurements in emergency situations. In this case, the fact that variables
related to the patient’s condition may be missing is explained by the values of the variables
themselves. If the patient is in a very bad condition, the heart rate may be high. Thus, the
higher values of the heart rate have a high probability of being missing, and the missing
mechanism will be MNAR. It is then essential to consider realistic missing-data scenarios and
to propose methods compatible with the MNAR assumption: it is the focus of Section 1.5.
As the MNAR mechanism is nonignorable, the missing-data mechanism has to be taken into
account. It leads to the key issues under the MNAR assumption: (i) the specification of the
missing-data mechanism addressed in Section 1.5.3, (ii) the identifiability of the parameters
of the missing-data mechanism, see Section 1.5.2, (iii) the need for specific methods presented
in Section 1.5.3, and (iv) the impossibility of testing the MNAR assumption discussed in
Section 1.5.4.

In this dissertation, we propose new methods, addressing real-world problems, that
are both theoretically sound and computationally efficient. Our main contributions are
summarized in Section 1.6.
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1.2 Key tools for missing-data analysis

1.2.1 Missing-data pattern

In the following, the data sample is denoted as X of size n x d, where n is the number
of observations and d the dimension (the number of variables). More precisely, one can
write X = (X1|...|X,.)T, in which each observation X; = (Xji,...,X;q)" belongs to
the d-dimensional features space X which depends on the data type at hand (categorical,
continuous or a mix of both). We distinguish the random variables from their realisations,
by denoting them with capital and lower-case letters respectively. For instance, x;; is a
realisation of variable X ; for individual ¢. We assume that X contains missing values, i.e.
some of its entries are denoted as NA for Not Available. The missing-data pattern, denoted
by M is defined as follows:

Definition 1 (Missing-data pattern). The missing-data pattern M € {0,1}"*% is a (random,)
binary matriz, such that its realised values are
1 if x5 is missing,

Vie{l,...,n}, Vje{l,...,d}, mij:{ (1.1)

0 otherwise.

Until Rubin (1976) introduced the notion of missing-data mechanism and treat M as a
random variable, the missing-data pattern was only viewed as a realisation and was largely
ignored in the statistical analysis.

With an incomplete dataset at hand, saying where the missing data occur is not the most
difficult part, as the realisation of the missing-data pattern is always observed. However,
specifying the missing-data mechanism, which amounts to modelling the distribution of the
missing-data pattern according to the data, is more complicated.

1.2.2 Missing-data mechanism

Rubin (1976) classifies the cause of the lack of data into three missing-data mechanisms,
which describe the relationship between the missing-data pattern and the data values. The
historical notations have been slightly modified to avoid overloading notations and simplify
interpretation. What we called the classical definitions are widely used in all papers and
textbooks on missing values. However, as discussed below, these definitions can be subject to
debate (Seaman et al., 2013) and alternative definitions have been suggested. In all definitions,
the missing-data mechanism is always characterized by the conditional distribution of M
given X, parameterized by an unknown parameter ¢ € {2.

(a) Classical definition of missing mechanisms Some authors (including the precedent
editions 1987, 2002 of Little and Rubin (2019) and Schafer (1997)) denote the observed
components and the missing components of X as X°P% € X°" and X™$ ¢ XY™ where
X°bs and X™ are subsets of the space X. In the following, the conditional distribution of
M given X is written as fyx(.|.; ¢), parametrized by ¢. The three different missing-data
mechanisms can be defined as follows.
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Notation Description

X € X" (vector of size nd) Vectorized data containing missing values
M e {0,1} Vectorized missing-data pattern

Xobs g yobs Observed component of X

Xmis ¢ ymis Missing component of X

X € X™ (matrix of size n x d) Data matrix containing missing values

M e {0,1}nxd Missing-data pattern

X i(.o) € Xi(_o) Values of the observed variables for ind. ¢
X i(.l) € Xi(_l) Values of the missing variables for ind. ¢

Table 1.1: Notations for the missing-data mechanisms for Definition 2 (at the top) and for
the Definition 3 (at the bottom).

Definition 2 (Missing-data mechanism (classical)). The missing-data mechanism is said

e missing completely at random (MCAR) if

fuix(M|X5¢) = fu(M;6), VX eX" VoeQy

e missing at random (MAR) if
Fax (MIX;6) = Fagxom (M]X%50),  VX™S e X5 v e 0

o missing not at random (MNAR) when the MAR assumption does not hold.

This first definition is sufficient enough to get an intuition on the different missing-data
mechanisms: roughly speaking, the missing-data mechanism is said (i) MCAR when the
occurrence of the missing data is totally independent of the data, (ii) MAR when the
unavailability of the data depends on the values of observed variables and (iii) MNAR when
the process that causes the missing data depends on the values of missing variable, and
possibly observed ones too. As we will see later in detail, MCAR and MAR can be handled
more easily than the challenging MNAR case. We illustrate these missing scenarios on the
following example.

An example of missing-data mechanisms Consider the simple situation of a survey
with two variables, Income and Age, with missing values only on the Income variable. The
MCAR setting implies that the missing values are independent of any value (e.g. respondents
have forgotten to fill the form). The MAR situation settles that missing values on Income
depend on the values of Age (e.g. younger respondents would be less incline to reveal their
income). The MNAR scenario allows the occurrence of the missing values on Income to
depend on the values of the income itself (e.g. poor and rich respondents would be less incline
to reveal their income): even though Age and Income are related, the process that causes
the missing data is not fully explained by Age. Consequently, knowing the value of Age is
not enough to retrieve the value of Income. See Figure 1.3 to visualize this example.
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Figure 1.1: Ilustration of MCAR (top left), MAR (top right) and MNAR (bottom)
mechanisms for the survey example, when the Income is missing and the Age is fully
observed. Individuals containing missing values (resp. fully observed) are represented in
orange (resp. blue). To obtain these plots, the ground truth is assumed to be known, i.e. we
know the underlying values of the missing elements in Income. The missing values for the
MCAR mechanism in Income occur for any age of the respondent. For the MAR mechanism,
it is clear that the younger the respondent, the more likely it is that their income is missing.
For the MNAR mechanism, the low and high values of Income are missing. It corresponds to
the self-masked mechanism, because the unavailability of a value depends on the value itself.
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(b) Removing the ambiguity in the definition of the mechanisms Definition 2 is
often subject to debates. Indeed, the notations for X°P and X™ are ambiguous, because
both vectors depend on the missing-data pattern M. One could note that X°PS (resp. X™i)
is the matrix formed by the components z;; if m;; = 0 (resp. m;; = 1). Thus, X °bs and
X™is are functions of M so that writting M|X°" is not appropriate.

Little and Rubin (2019) suggest a new definition to clarify the shadows of Definition 2.
More precisely, the values of the observed (resp. missing) variables for individual i are denoted

as Xi('o) (resp. X Z-(.l)). The space of the observed (resp. missing) variables for individual i is

XZ(O) = {Xl = (Xi17 .. -aXid) e X : XZ(I) = Xz(l)} (resp. Xz(l) = {Xz = (Xila . aXid) e X :
X0 = xOyy.

Definition 3 (Missing-data mechanism (Little and Rubin, 2019)). Under the assumption
that the pairs (X; , M;); are i.i.d., the missing-data mechanism is said

e missing completely at random (MCAR) if

faix(milzis @) = fax (milel; o), Vai #a] e X, VoeQy,
where x} € X is a realisation of X; , distinct from x; € X,

e missing at random (MAR) if
fM|X(mi,|CUz(‘,0)a l‘g_l); ¢) = fM\X(mi.|$z(_0)7$;_(1)§ ), Vl‘g_l) # 95;(1) e XM, Vg e Qy;

e missing not at random (MNAR) if the MAR assumption does not hold for some
(a7, 2;).

Note that we have slightly modified the definition of Little and Rubin (2019) as we added
the parameter ¢ in such a way that the statements hold for any value of ¢. Definitions 2
and 3 are equivalent!, only the notations differ (summed up in Table 1.1).

As pointed by Seaman et al. (2013), Definition 3 still remains restrictive: for the MAR
mechanism, it requires fully observed variables. Indeed, the law of M given X should be
the same for each individual 7 and should depend on observed variables. Therefore, some
variables (at least one) must be always observed. To tackle this issue, some authors (Seaman
et al., 2013; Murray et al., 2018) propose to consider a more general mechanism, called the
realised MAR mechanism, which in fact corresponds to the historical version given in Rubin
(1976). This definition does not consider the i.i.d. assumption as expected and relies on
statements holding only for realised values of (X; , M; ), and not for any values of (X; , M;).
Even if this version is of particular interest, it is more canonical to use Definition 3. Indeed,
in statistics, statements about the realised values are rarely used, it is often preferred to use
a dedicated formalism that involves random variables directly.

In the literature, a mechanism derived from the general MNAR given in Definition 2
is often considered (Mohan, 2018), when the unavailability of a missing variable X ; only

!Note that the assumption that the rows of (X, M) are i.i.d. is implied in Definition 2. Without this
assumption, a function f should be defined for each couple (X;, M;).
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depends on the values of X ; themselves. It is the so-called self-masked MNAR mechanism,
given in the definition below.

Definition 4 (Self-masked MNAR mechanism). Under the assumption that the pairs
(Xi., M;); are i.i.d., the missing-data mechanism is said self-masked MNAR if

vie{L,....d}, farx (milz” 2lV; ¢) = fM|x(mz‘j!3?$))- (1.2)

Note that if a specific distribution for fj;x is assumed, it is often a logistic distribution
or a probit one (Ibrahim et al., 1999; Morikawa et al., 2017; Tang and Ishwaran, 2017). For
the logistic distribution, Equation (1.2) leads to

-1
Farp (migle 25 6) = (14 ooy

where ¢ = (¢1, p2).

(c) Testing the missing-data mechanism In practice, it is extremely difficult to know
if the missing values in a dataset are either MCAR, MAR or MNAR and it is exacerbated
if there are different types of missing values within the same dataset. In Figure 1.2, we
illustrate this issue by representing the observed (available) values for the simple situation of
a survey with two variables, Income and Age, with missing values (MCAR, MAR or MNAR)
only on the Income variable.

Most of the time, the knowledge of the missing-data mechanism relies on domain expertise:
experts know why the data are missing (they may not have had time to fill in the form, the
measuring device may not indicate values above a certain threshold, etc.).

Nevertheless, there are few cases where it is possible to infer the mechanism from the data
(Schafer and Graham, 2002; Graham et al., 1994). Let us consider the following example
with the questions “How old are you?” and “do you go and vote?”. In such a case, the
missing data in the answer to the second question were never intended to be collected for
people below 18 years old and the mechanism can be identified as MAR as the probability
to be missing on the voting variable depends on the age values.

As an alternative, there are some procedures to check the validity of the assumption but
only to test whether the mechanism is MCAR. Little and Rubin (2019, Chapter 3) propose
a simple procedure to verify if the MCAR assumption makes sense. For a fully observed
variable X ; (i.e. Vi e {1,...,n},m;; = 0), the purpose is to compare the distribution of X ;
for the “complete” individuals such that all the variables are observed (i.e. the individuals ¢
such that Vj € {1,...,d},m;; = 0) and the distribution of X ; for the individuals which have
missing values (i.e. the individuals ¢ such that 3j € {1,...,d},m;; = 1). If the distributions
are significantly different, the MCAR assumption is invalid.

For the M(N)AR mechanisms, there are some interesting works which assess the results
sensitivity to alternate hypotheses about the missing-data mechanism (see Section 1.5.4 for
more details).

# In this dissertation, a close attention is paid to considering realistic missing-data
mechanisms. Even if in Chapter 4 only a more general MCAR missing-data mechanism is
studied, Chapter 2, 3 and 5 focus on MNAR ones.
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Figure 1.2: Ilustration of MCAR (top left), MAR (top right) and MNAR (bottom)
mechanisms for the survey example, when the Income is missing and the Age is fully
observed. To obtain these plots, the ground truth is not assumed to be known (contrary
to Figure 1.1). The observed individuals for Income and Age are represented in blue and
individuals which are observed only for Age are represented in orange with a default value for
Income. For the MCAR mechanism, the missing values are uniformly distributed according
to Age. For the MAR and MNAR mechanisms, it is difficult to come to any conclusions. For
the MAR mechanism, we can observe that there are fewer missing values for higher values of
Age. For the MNAR mechanism, it seems that the age group between 35 and 45 years is
less prone to lack in Income. In either cases, this does not tell us whether the mechanism is
MAR or MNAR.
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1.2.3 Notion of ignorability

The main difference between the MCAR and MAR mechanisms on the one hand, and the
MNAR mechanism on the other hand, is that the former do not require to account for the
missing-data mechanism, while the latter does. To see this, the simplest way is to consider
the inferential framework, when the aim is to estimate the parameters of an underlying
model on the data.

Rubin (1976) treats the missing-data pattern as a random variable (see Section 1.2.1).
At first glance, the statistical inference should be conducted on the joint distribution of the
data X and the missing-data pattern M, even if the main goal is to estimate the parameter
6 of the data distribution, denoted as fx(.;6).

(a) Likelihood-based inference without missing values To estimate 6 without
missing values, a common estimation strategy in a parametric framework relies on maximizing
the likelihood associated to the data. Assume that an i.i.d. sample X = (X,...,X,,) is
distributed according to fx(.;6), with an unknown parameter #. The likelihood L is formed
from the joint probability distribution evaluated on the observed sample, viewed as a function
of the parameters only, namely

L(6; X) = | [ fx(@is6).

i=1

The likelihood is thus the probability of drawing the sample obtained. Then, a standard way
of estimating 6 is to maximize the likelihood with respect to the parameters. More formally,
this amounts to choosing the maximum likelihood estimator 6 (more details are given by
Cox and Hinkley (1979)) as
0 = argmax L(0; X).
0

(b) Likelihood-based inference with missing values With missing values, the
statistical inference is conducted on the joint distribution of (X, M) denoted as fx a(.; 0, ®).
By abuse of notation, X and M are viewed as vector of size nd and no longer as matrices of size
n x d. As the rows of (X, M) are i.i.d., one has fx ar(x,m;0,¢) =[]/ fxm(zi,mi;0,¢).
where 0 € g and ¢ € () are the data distribution parameter and the missing-data mechanism

distribution parameter. €y, denotes the joint parameter space.
The full likelihood Ly can thus be defined as

Lean (0, 0; X, M) = fx a(x,m;0,0) (1.3)

However, in presence of missing values, this likelihood is intractable (since it involves X (1))
and the full observed likelihood is considered instead, denoted as Ly obs, by integrating
(1.3) over the missing values as follows

Mmmme@Jﬂ=f Fxar(z,m; 0, ¢)da™, (1.4)
x (1)

11
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The form of the full observed likelihood is rarely closed, so that a direct computation is
often impossible. To overcome this issue, the EM algorithm (Dempster et al., 1977) can be
used (see Section 1.3.2).

(c) Ignorability Let the observed likelihood be denoted as Lig, such that

Lign(6; X)) = J Fx (z;0)dz™). (1.5)
x Q)

The missing-data mechanism is said ignorable if the statistical inference for 6 can be conducted
by maximizing the observed likelihood, instead of the full observed likelihood given in (1.4).
This is formalized in the definition below and more precise conditions are given in Theorem
6.

Definition 5 (Ignorable missing-data mechanism (Little and Rubin, 2019)). The missing-
data mechanism is said ignorable, if

Vo € Qy, argmax Ly obs (0, ¢; X, M) = argmax Ligy (6; X @)
0y 0y

Theorem 6 (Ignorability of a missing-data mechanism (Little and Rubin, 2019)). The
missing-data mechanism is ignorable if the two following condition hold

(i) the parameters 6 and ¢ are distinct, in the sense that Qp 4 = Qg x Q.

(ii) the full observed likelihood can be factorized as follows

Leanons (0, ¢; X O M) = fax(m|z; ¢) Lign (0; X ).

Condition (i) means that each value 6 € Qy is compatible with each value ¢ € Q4 (it is a
technical condition required to split the likelihood as in (ii)).

Theorem 6 provides one of the key results in missing-data analysis. Under condition (i)
and the M(C)AR assumption, the inference about 6 can be achieved by maximizing the
likelihood given by (1.5), which is computationally easier than (1.4) and especially avoids
any modelling of the missing-data mechanism (in particular, its specific form is not required
to be modeled). Indeed, standard computation give

qull,obs(97 ¢a X(O)a M) = J

Fxar(z,m; 0, ¢)daV
x (1)

D x@s0) far(mla; ¢)da)
x@

(=) . 0). (1) . .

= Ix(x;0) farx (m|z™; ¢)dz (using Definition 3)
x@)

) p (]2 6) f Fx(a:0)daV,
x (1)

12
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In Step (), the factorization of the joint distribution is chosen so as to show the distribution
of the missing-data mechanism fjx explicitly. In Step (xx), the definition of the MAR
mechanism is used, implying that the missing-data mechanism does not depend on the
missing values 2(1). In Step (x * %), this term is taken out of the integral.

Note that the likelihood-based inference theory has been presented in the frequentist
framework, but the Bayesian framework could be also considered (Tanner and Wong, 1987;
Little and Rubin, 2019, Chapters 6 and 10), where the parameters (6, ¢) are considered as
random variables rather than fixed quantities.

For the sake of clarity, Table 1.2 summarises the different likelihood functions introduced
so far.

Notation Name Quantities involved Comment

L (1.3) Full likelihood X0 xM® pr not tractable

Leanobs (1.4)  Full observed likelihood X O, M needed for MNAR data
Lign (1.5) Observed likelihood X sufficient for M(C)AR data

Table 1.2: Summary of introduced likelihoods in Section 1.2.3

1.3 Dealing with missing data

1.3.1 Complete-case analysis

The complete-case analysis consists of removing all the individuals containing missing values;
an illustration is given in Figure 1.3. Due to its simplicity, this method is widely used in
data science.

First of all, it should be noted that this method can be considered only under the MCAR
assumption (when the missing pattern and the data are independent M 1 X). Indeed,
in this setting, the observed individuals are representative of the whole population. For
M(N)AR mechanisms, this method leads to large bias in the estimates and can result in
disastrous statistical analyses. Moreover, it should be noted that in most cases (even for
MCAR data) removing individuals creates a huge loss of information. Graham (2009) advises
against using this method when individuals with missing values represent more than 5% of
the population. Zhu et al. (2019) takes the following example: they consider a data matrix
X € R™*? where each entry has a probability 1% to be missing independently (MCAR). If
d = 5, around 95% of the individuals are complete; however, when dimension is larger such as
p = 300, the complete-case analysis amounts to keep only 5% complete rows. Consequently,
despite its simplicity, for many applications (including the Traumabase dataset), this method
is not relevant and other methods should be considered.

1.3.2 EM algorithm and variants

The algorithm In the inferential framework, a general method to maximize the full
likelihood (1.3) is the Expectation Maximization (EM) algorithm, introduced as is by

13
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X1 X2 X3 X1 X2 X3
12 28 NA J12—28—NA-
23 NA 89 23—NA—89-
x- |32 6 2u|xcc- [32 ¢ 24
NA 3 7 NA—F—F

Figure 1.3: Illustration of the complete-case analysis: if X is the data matrix, the statistical
inference will be conducted on X““, by removing individuals (rows) which contain missing
values.

Dempster et al. (1977). After initializing the algorithm with 6(9), the two following steps are
iteratively proceeded until convergence,

e the E-step (Expectation) (at step r): it consists of computing the expected complete
likelihood knowing the observed data X (0) and the current value of the parameter 6",
denoted as @,

Q(6;0") = E[Liuign(6; X)| X V3 671,

where Ly jgn is the complete likelihood
qull,ign(e;X) = fX(a:,Q) (16)

e the M-step (Maximization) (at step r): @ is maximized over 6,
0" = argmax Q(6;6").
0

From a theoretical point of view, Dempster et al. (1977) have proven that the
EM algorithm produces a monotonically increasing sequence for the expected likelihood
(Q(6;0"))r>0. However, the EM algorithm can be trapped in local maxima (for example,
McLachlan and Krishnan (2007) gives more details about the EM algorithm, both on the
theoretical and practical aspects).

Note that the two steps of the EM algorithm do not involve the imputation of missing
values as such, although the E-step can be reduced to this in some cases, in particular if
Lyt jgn (65 X) is linear in X (1) (Sportisse et al., 2020). Therefore, this algorithm is not an
imputation method, it allows to modify the estimation process to handle incomplete datasets.

Variants to tackle the computational burden In the specific case of (multivariate)
Gaussian data, explicit formulae can be derived (the E-step requires the computation of
sufficient statistics of X () so that both steps of the EM algorithm can be written in closed-
form, but it is not generally the case, as discussed by (Meng and Rubin, 1993). To fix the
ideas, consider the continuous case. The E-step consists of computing

Q(6;6") = Lm Fx(@;0) Fxwxo (@M ]20; 0)dz), (1.7)

14
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where f X x© denotes the conditional distribution of the missing components given the
observed ones and the missing-data pattern. As this integral can be not explicit, one
can resort to sampling methods, such as Monte Carlo sampling (Ibrahim, 1990) when the
conditional distribution is known, or adaptive rejection sampling (Gilks and Wild, 1992;
Ibrahim et al., 1999) otherwise. However, these methods are computationally costly, as they
involve many drawings from the conditional distribution at each step of the EM algorithm.

To overcome this issue, Celeux and Diebolt (1985) have proposed the stochastic EM
algorithm (SEM), for which the expectation step is replaced by a “drawing” step as follows,

e the SE-step (at step 7): draw the missing values (z(1))"+1 ~ fX(l)‘X(O)(.|:L'(O); o)

e the M-step (at step r): maximize the full likelihood Ly ign in (1.6) and compute
0" = argmax fx (2, () *1;9).
0

Contrary to the Monte Carlo or adaptive rejection samplings, the SE-step requires the
drawing of only one sample for (z(1))"+1. The SEM algorithm also has another possible
advantage over the EM algorithm: it is not trapped by the first local maximum encountered
of the likelihood function and it converges to the neighbourhood of the maximum likelihood
(Celeux and Diebolt, 1985). Delyon et al. (1999) propose another stochastic approximation
of the EM algorithm, called the SAEM algorithm, which has been proven to converge to the
maximum likelihood under specific assumptions, but is more difficult to implement.

Variants to obtain confidence intervals The EM algorithm applied with its initial
form does not provide any variance for the estimates, preventing from obtaining associated
confidence intervals. Note that the variance of the estimates can be estimated using extensions
of the EM algorithm, such as the supplemental EM algorithm (Meng and Rubin, 1991).

Further references on the EM algorithm in the specific regression framework will be given
in Section 1.4.1. In addition, the EM algorithm will be derived and discussed for the MNAR
case in Section 1.5.3.

1.3.3 Imputation

A popular approach consists of imputing missing values. It allows to obtain a complete
dataset, for which any classical analysis method can be applied. Note that even though we
impute the data, the aim is not to impute as well as possible, but to estimate parameters of
an underlying model.

Single imputation A first strategy is to propose a predicted values for each missing entry,
which is referred to as single imputation methods.

15
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Figure 1.4: Imputation by the mean of the missing values in Income (see Figure 1.1).

Mean imputation The most popular method is the mean imputation. The principle
is very simple: if the variable j of X contains missing entries, each one is replaced by the
mean of the observed values of the variable X ;. Despite its simplicity of implementation,
this method distorts the distribution of the data, which induces bias in estimators (Schafer
and Graham, 2002), as illustrated in Figure 1.4.

Model-based methods The imputation can be performed assuming a joint model
for the data (X, X)) (see for example (Honaker et al., 2011) in the Gaussian case) or
considering a fully conditional model (Van Buuren, 2018).

In nonparametric settings, some methods impute missing values using the similarities
of the individuals, they include k-nearest neighbors algorithm, (Troyanskaya et al., 2001;
Zhang, 2012) or a near concept called hot-decks procedures (see (Andridge and Little, 2010)
for a complete review). Powerful methods relying on nonparametric assumptions also include
random forest imputations (Stekhoven and Bithlmann, 2012). Besides, imputation methods
based on deep learning techniques have also been proposed using generative adversarial
networks (Yoon et al., 2018), denoising autoencoders (Gondara and Wang, 2018) and
variational autoencoders (Mattei and Frellsen, 2019). In addition, a recent work (Muzellec
et al., 2020) proposes an imputation strategy using optimal transport.

Low-rank methods The low-rank model has become very popular in a large variety
of applications (genomics (Price et al., 2006), denoising (Gavish and Donoho, 2017),
recommender system (Bell and Koren, 2007)). It can approximate many datasets (Udell and
Townsend, 2019), as soon as individual profiles can be summarized into a limited number of
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general profiles, or dependencies between variables can be established. Recently, low-rank
methods have proven to be a very powerful solution for dealing with missing values (Josse
et al., 2016a; Kallus et al., 2018; Robin, 2019).

A matrix © € R"*¢ has a low rank, if its rank, refereed to as the dimension of the vector
space generated by its columns, is small compared to the dimensions n and d. More precisely,
denoting the rank of © as r > 1, the matrix © has a low rank if r « min{n, d}, where « can
be interpreted as Irmax = 1,7 < "max < min{n, d}. Low rank models often assume that the
dataset X is a noisy realisation of ©, so that

X =0 +¢, (1.8)

where € is a noise matrix. In this case, to estimate © without missing values, the most
classical method for dimensionality reduction is the Principal Component Analysis (PCA)
(Jolliffe, 1986), which nearly amounts to solve the optimization problem

O € argming | (X — ©)|% s.t. rank(©) < r,

with |.|r the Frobenius norm. To estimate ©, when the columns of X have been initially
centered, a step of the PCA consists of computing the truncated singular value decomposition
(SVD) as follows,

SVD(X) = U () Dy V.o

where U € R™*", V e R4 are orthonormal matrices containing the left and right singular
vectors of X and D € R™*? where the diagonal coefficients are the singular values or X and the
others are zero. U ) = (Uij)ief1,...n}jef1,..ry (tesP- Vi) = (Vij)ie1,....d} je(1,....r}) denotes
the submatrix of U (resp. V') defined by its r first columns and D,.y(,y = (Dij)ieq1,...r} je{1,....r}
is the submatrix extracted from D keeping only the r first rows and and the r first columns.

Classical methods to handle missing values are based on convex relaxations of the rank
such as the nuclear norm |.|. and consists of solving the following penalized weighted
least-squares problem

© € argming| (Lyxa — M) © (X — ©)[F + 6], (1.9)

with A > 0 a regularization term, ® the Hadamard product (by convention 0 x NA = 0) and
1,4 € R"*4 with each of its entry equal to 1. The estimator O of O is then the matrix
which fits the data best in the mean squared sense (first term in (1.9)) and which is likely to
be of low rank (second term in (1.9)). To solve the optimization problem, Hastie et al. (2015)
propose to use a proximal gradient method, leading to iterative soft thresholding algorithm
(ISTA) of the SVD. More particularly, this iterative algorithm consists of two steps, given a
matrix OY,

e FEstimation step (at step t): perform the threshold SVD of the complete matrix
X' = (lpxg—M)OX + M OO,
which leads to
SVD,(X") = U'DL VY, (1.10)
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where Ut € R™*", V't € R™*? are orthonormal matrices containing the singular vectors
of X' and D} € R"™" is a diagonal matrix such that its diagonal terms are (D}); =
max((o; — A),0),i € {1,...,r}, with o; the singular values of X*.

o Imputation step (at step t): the entries of O corresponding to missing values in X are
replaced by the values of SVD,(X?) in (1.10),

Ol oM = SVD, (X)) ® M.

Other works have suggested related algorithms (Josse et al., 2016a) or extended these
methods to handle both continuous and count data (Udell et al., 2016; Robin et al., 2020).

In Equation (1.8), note that the low-rank matrix is a fixed parameter. One could consider
the probabilistic principal component analysis (PPCA) (Tipping and Bishop, 1999) instead,
for which the probabilistic model can be advantageously exploited. The data matrix X
is a noisy realisation of the factorization of the loading coefficients B € R"*% and r latent
variables groupes in the matrix W e R™*",

X=1a+WB +e¢, (1.11)

with a € R? which allows X to have non-zero means, 1 = (1...1)7 € R® and W € R™*" such
that W; ~ N (0, L «,),Vi € {1,...,r}. As soon as r < d, this model is motivated by the fact
that a few latent variables explain the dependencies between the variables, which can be seen
as a low-rank model with random effects. Ilin and Raiko (2010) discuss several approaches
to deal with missing values in the PPCA model. Note that in the methods based on a model
either with fixed effects or with random effects (PPCA), dealing with missing values allows
simultaneously to make the parameters estimation and to perform single imputation of the
data.

# In this dissertation, both Chapters 2 and 3 consider low-rank methods with fixed and

random effects to deal with MNAR, data, whereas the methods presented in this section are
only valid for M(C)AR data.

Multiple imputation The single imputation does not reflect the variability of imputation.
To overcome this potential issue, multiple imputation (Rubin, 2004) can be used. The
method consists of generating M plausible values for each missing value, leading to M
complete datasets, X L ,X M The analysis is then performed on each imputed data sets
and results are combined so that the final variance accounts for the variability induced by
the imputation. The most popular multiple imputation is the one developed by Buuren
and Groothuis-Oudshoorn (2010), which use multiple imputations by chained equations,
i.e. iterative conditional distributions assuming a Bayesian framework. Indeed, multiple
imputation is intrinsically linked to the Bayesian approach (see (Erler, 2019; Little and
Rubin, 2019, Chapter 10) for more details).

Murray and Reiter (2016) consider a nonparametric Bayesian strategy and Audigier
et al. (2016b) use a Bayesian principal component analysis. More recently, Erler et al. (2019)
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propose a fully Bayesian unified framework, extension of (Buuren and Groothuis-Oudshoorn,
2010).

Simple imputation methods have also been adapted to offer multiple imputations, without
necessarily giving rules for combining the different results (Honaker et al., 2011; Josse et al.,
2016a; Mattei and Frellsen, 2019).

1.3.4 Naive imputation coupled with adapted algorithms

When the main goal is to estimate some parameters of an underlying model (and not to
perform matrix completion), another strategy is to naively impute the missing values and
then to account for the imputation error by adapting the subsequent algorithm. More
precisely, if the goal is to apply an algorithm A (available in the case without missing values),
the two steps are the following ones.

(i) First step (the easiest one): naively impute the missing values, say by zero, to get a
complete dataset X. It leads to

X = X O (Loxq — M).

(ii) Second step (the difficult part): adapt algorithm A to account for the error induced
by the imputation of the missing values in (i) and apply this debiased version to the
complete dataset X.

This strategy has been mostly studied in the linear regression setting, when the covariates
are missing, i.e. E[Y|X = z] = f(x), with f a linear function. In a sparse regression context,
Rosenbaum et al. (2010) and Loh and Wainwright (2011) adapt the Dantzig selector and
LASSO by debiasing the resulting covariance matrix. Besides, in a ridge regression framework,
Ma and Needell (2018) consider debiased gradients to apply the stochastic gradient descent
(SGD) algorithm. More recently, in a nonlinear setting, Yi et al. (2019) propose a heuristic
to debiase zero-imputation in neural networks.

# In this dissertation, Chapter 4 and Appendix A use this strategy to handle missing
values with the averaged stochastic gradient algorithm and with the Robust Lasso-Zero
algorithm.

Inverse Probability Weighting (IPW) method The approach to naively impute
missing values and adapt a classical algorithm has actually false similarities with the IPW
methods (Seaman and White, 2013). Indeed, the latter consists of keeping only complete
observations and reducing the induced bias by reweighting the loss with respect to the
complete observations with their probabilities of being observed. Thus, this method does not
use the whole matrix, as it is the case for the strategy mentioned before. These approaches
often consider simple reweighting, assuming that the covariates are fully observed and only
the outcome variable may be missing.
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1.3.5 Comparison of the methods

We now compare the methods that have been introduced in this section. First, the EM
algorithm (Section 1.3.2) is perfectly well fitted to the aim of estimating parameters. However,
it has to be established for each statistical model, meaning that if one wants to do logistic
regression with missing values, one has to derive an EM algorithm and if on the same data,
one wants to do unsupervised clustering, one has to develop another algorithm. In addition,
it is not often an easy task to design EM algorithms. For instance, it has been seen that
it can involve non-explicit integrals (see (1.7)). Moreover, as stated before, this algorithm
does not provide confidence intervals of the estimates, without being coupled with other
algorithms. This remains yet a powerful algorithm to handle missing data, and amenable to
the MNAR case, as shown in Section 1.5.3. Note also that even though no imputation is
performed, this step can be added easily.

The single imputation (Section 1.3.3) allows to obtain a complete dataset and is easier
to implement. As for the multiple imputation (Section 1.3.3), the difficulty is only to
propose the imputation, because the estimation part is performed with usual algorithms
applied to the imputed datasets. Note that mean imputation lead to biases in the estimates
(Schafer and Graham, 2002). In particular, Jones (1996) has studied the induced bias in the
regression framework. The main drawback of any single imputation method is that it does
not take into account the uncertainty of the imputation (Schafer and Graham, 2002). On
the contrary, multiple imputation accounts for the uncertainty, but then requires specific
rules for combining the results, which are not defined for each algorithm (in particular no
results are given, either for regression in high-dimension or for unsupervised learning or even
for variable selection).

Finally, naive imputation coupled with debiasing of classical algorithms is an easy strategy
to implement, as soon as the algorithm has been debiased. The goal is not to impute missing
values, but to adapt powerful algorithms (Lasso, SGD,...) to the missing values case. For
the sake of clarity, Table 1.3 gives an overview of the methods comparison.

In conclusion, there is no general recommendation as to which method to choose. Keep
in mind that the choice depends mostly on the goal and on both the data and missing-data

types.

1.4 Specific learning frameworks with missing data

1.4.1 Linear regression with missing data

The literature on how to deal missing values is vast (see Section 1.3), but there are still some
challenges even for linear regression models and M(C)AR data. Consider the classical model

Y =XfB+e (1.12)

where Y € R is the outcome variable, X € R™"*¢ the covariates, § € R? the regression
parameter and € € R? the noise term, traditionally assumed to be Gaussian € ~ A (0,021,),
with o2 its variance. We assume that the covariates contain missing values.
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Method .Slmple Imputation C.onﬁdence Main drawbacks
to implement intervals

Complete . information loss,
v naive X . .
case bias estimates
not directly, but . specific EM algorithm
EM X can be obtained " be obtained for each statistical model
. Smgl(.e v single X possibly blas.ed estl.mates
imputation (when too simple imp.)
' Multlple v multiple v speC{ﬁc. rules for
imputation combining results
Naive imp. v not the goal X debiasing

+ debiasing each algorithm

Table 1.3: Comparison of the methods introduced in Section 1.3

Likelihood-based approaches When the aim is to estimate the parameter 5, Novo and
Schafer (2013) provide an implementation using the EM algorithm (Section 1.3.2). Instead
of considering the likelihood given in (1.3), they consider the following one, which involves
the response variable y,

qull(ﬁ79a ¢a Yv X’ M) = fY,X,M(ya Z,m; 57 97 d))

Besides, Murray et al. (2018) derive the multiple imputation (Section 1.3.3) in the linear
case. In both methods, strong parametric assumptions are made on the distribution of the
covariates, often assumed to be Gaussian.

Stochastic gradient descent algorithm Without missing values, a powerful algorithm
for linear regression models, which requires only few parametric assumptions, is the stochastic
gradient descent algorithm (SGD) (Robbins and Monro, 1951). In general, two different
settings are studied: (i) the streaming setting, i.e. when the data comes in as they go along,
or (ii) the finite-sample setting, i.e. when the data size is fixed and form a finite design matrix
X. In both cases, the observations (X;,Y;) are assumed to be i.i.d.. In order to estimate /3
in (1.12), the aim is to solve the least-squares optimization problem,

B e argmingEx y[(V; — X;.8)?] := R(B), (1.13)

where R is the theoretical risk and Ey x denotes the expectation over the distribution of
(Xi.,Y;) (independent of i since the observations are i.i.d.). The SGD algorithm is an iterative
algorithm which computes the current iterate by moving it in the opposite direction of a
unbiased gradient as follows, for step k,

Br = Br—1 — agk(Br-1),

where « is the step-size and E [g (Bk—1)|Fr—1] = VR(Bk—1), Fr—1 = o(X1., Y1, ..., Xk—1., Yi_1)
the o-algebra. To solve (1.13), the ordinary least-squares estimator could be considered,
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B =(XTX)"'XTY, but it requires the inversion of the matrix (X7 X)~! of size d times d
which can be computationally costly. Due to its cheap computational cost and memory per
iteration, the stochastic gradient is a key ingredient in machine learning.

In presence of missing values, the goal is to find the unbiased gradients g; depending on
known quantities, i.e. Xy = X5 © (1,xq — M) and Yy. Ma and Needell (2018) propose to
naively impute missing values and adapt the SGD algorithm in the linear regression model
(method presented in Section 1.3.4).

However, the references given above are not suitable for the high-dimensional setting,
when the dimension of the observations d is larger than the number of the observations n.
This case is encountered in many applications, such as genomics, because the gene expression
is naturally represented by many variables.

High-dimensional setting In order to tackle the curse of dimensionality, classical
methods assume that [ is s-sparse, i.e. only s out of its d entries are different from
zero. To estimate [, the classical strategy is to penalize the least-squares problem
f € argming|Y — X 8|2, with the Ridge regularization (Hastie, 2020),

B € argming|[Y — X5|* + A[|8]3, (1.14)

where |2 = Z?zl ﬁjz and A is the regularization parameter to tune. This regularization is
proposed in Chapter 4 for the averaged SGD algorithm. However, this regularization does
not allow to select relevant variables, as the LASSO (Tibshirani, 1996), by allowing some
coefficients to be zero. R

B € argming |y — X * + |57, (1.15)

where |81 = 2¢_, |8;]-

Loh and Wainwright (2011); Datta et al. (2017) propose to naively impute the missing
values and adapt the LASSO by debiasing the covariance matrix (same spirit as the methods
proposed in Section 1.3.4). Bogdan et al. (2015) use another penalization without missing
values to penalize the highest coefficients more strongly and Jiang et al. (2019) derive an
algorithm to the missing values case.

Chen et al. (2013) point that if the data are naively imputed, the linear regression (1.12)
can be be rewritten in the form of the sparse corruption model,

Y = X8+ +v/nw + €,

where w is a k-sparse vector. Consider the case of naive imputation by zero, a complete matrix
X = X ©®(1,xq — M) is obtained and w can represent the corruption due to imputations

w= ﬁ(X —X)ﬁ

#0 In this dissertation, we adapt the averaged SGD algorithm to the missing values case
in Chapter 4 and makes it suitable for the high-dimensional setting. Appendix A presents
a thresholded robust algorithm for model selection in the high-dimensional setting. Both
methods consider naive imputation and debiased algorithms.
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1.4.2 Supervised learning with missing data

In supervised learning, a key question, which comes up very often in applications, is how to
deal with missing data if the goal is to predict an outcome variable Y when the covariates
X contain missing values. As a reminder, the algorithms are learned from training data and
the results of new observations are then predicted by applying this learning. Two scenarios
can be considered, which imply different strategies:

i) the new observations do not contain missing values (efforts to better collect data have
been made),

ii) the new observations contain missing values.

In the first case, the distribution of interest is that of complete data, whereas in the second
case, this is the distribution of data containing missing values which should be estimated.

For i), a strategy consists of imputing the train set with imputation methods reviewed in
Section 1.3.3 and applying a classical learner to the complete training dataset (depending on
the cases: linear regression, random forest, gradient boosting (Hastie et al., 2009)). Another
solution is to use learning algorithms adapted to the case of missing data, such as stochastic
gradient algorithm (see Chapter 4).

The literature dealing with the case ii) is sparse. Josse et al. (2019) show that the mean
imputation is consistent for a powerful learner (including mostly random forests). In a linear
case, Le Morvan et al. (2020b) propose to specify the distribution of data containing missing
values with ReLLU activation functions, i.e. they want to find a linear function f such that
Y = f(XO1pxa— M), M). Le Morvan et al. (2020a) propose a general algorithm to tackle
this issue for different missing-data mechanisms (including MAR and self-masked MNAR).
Recently, You et al. (2020) also address the prediction task for graph representation learning
(only under the MCAR assumption).

1.4.3 Model-based clustering with missing data

Unsupervised learning concerns the analysis of datasets without outcome variables (unlabeled)
for which the aim is to group individuals. In particular, the model-based paradigm
(McLachlan and Basford, 1988; Zhong and Ghosh, 2003; Bouveyron et al., 2019), relying on
parametric assumptions for the data distribution, allows to perform clustering, by providing
interpretable models, valuable to understand the connections between the constructed clusters
and the features in play, by using the estimation of the parameters.

In model-based clustering, the goal is then to estimate an (unknown) partition of n
individuals X7 ,...,X,, into K groups. This partition can be encoded using the matrix
Z = (Z1|...1Z,)7 € {0,1}"*K whose i-th row Z;, = (Z;1,. .., Zik)" € {0,1}X is a group
indicator vector for the ¢-th individual, with z;; = 1 if x;, belongs to the class k£ , and
zir. = 0 otherwise. The model-based clustering relies on the assumption that the individuals

Xi,...,X, are an i.i.d. sample from the mixture distribution
K
flai;m,0) = > mfulwis 0r), (1.16)
k=1
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where 7, = P(z;, = 1) is the mixing proportion of the k-th component (Zszl m, = 1 and
7 > 0 for all k € {1,...,K}), fr(-;0) is the distribution of the data in the k-th group
parameterized by 0y, m = (71,...,7g) and € = (61,...,0x) denotes the whole mixture
parameter.

In order to deal with missing data, classical imputation methods are not designed for the
final clustering task. Most existing methods propose to maximize the full observed likelihood
given in (1.6) for M(C)AR data, written here for the specific model-based framework:

n [ K
L(m,0; X)) = H (Z JX(” kak(iﬂi.;e)dmz(',l))
i=1 \k=1 i

Hunt and Jorgensen (2003) implement the standard EM algorithm, Serafini et al. (2020)
also propose an EM algorithm to estimate Gaussian mixture models in the presence of
missing values by performing multiple imputations (with Monte Carlo methods).

#v In this dissertation, Chapter 5 addresses the model-based clustering with MNAR
data (with the selection models specification) and for mixed data (both continuous and
categorical).

1.5 Dealing with MINAR data

1.5.1 MNAR specifications

The specification of the missing-data mechanism is a crucial but controversial part of MNAR
data processing. In particular, the choice of the MNAR specification has a direct impact on
the identifiability, the method to use and the sensitivity analysis.

As introduced in Section 1.2.3, statistical inference is conducted on the joint distribution
(X, M) of the data and the missing-data pattern. However, this joint distribution is
intractable. To illustrate this idea, consider the following factorization

Fxar(x,m) = fxwxo @Dz, m) fxo 4 @@, m). (1.17)

The distribution fx ) 5, can be estimated from the data (only observed quantities) but some
assumptions on f XWX 01 should be added as the final goal is to get the joint distribution
fx,m- In the literature, the two main approaches to model the joint distribution are

(I) the selection models (Heckman, 1976),
fxm(x,m;0,0) = fx(x;0) far x (mlz; ¢), (1.18)
(IT) the pattern-mixture models (Little, 1993),

fxn(z,m; & 0) = fxp(x|m; €) fu(m; ), (1.19)

where £ and ¢ are the parameters of the conditional distribution of the data given the
missing-data pattern fx|ys and the missing-data pattern fas respectively.
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The selection models consider a factorization of the joint distribution involving the
distribution of the data fx and the incidence of the missingness as a function of X, with fy/ x.
Regarding the definition of the missing-data mechanisms (Definition 3), this formulation
could be the most natural and under parametric assumptions, modeling the data distribution
also seems natural. For instance, in the continuous case, typical assumptions set the data to
be Gaussian. For the missing-data mechanism, widely used distributions include the logistic
or the probit one.

The pattern-mixture models factorize the joint distribution by specifying the missing-data
distribution fj; and the conditional distribution of the data given the missing-data pattern
Jx|am- The main advantage of the pattern-mixture models is that it is clear what information
is available from the observed data and what quantities need to be extrapolated, i.e. for
what quantities prior information that cannot be tested with the observed data is needed.
In particular, for the univariate setting (d = 1),

Fxm(@,m; &) = fxin=o(x1058) far (0;9) + Fxnr=1(2[1;€) far (15 ), (1.20)

the quantity which needs to be “extrapolated” is fx|y/—; which is the distribution of the
data conditionally to be missing. This factorization can be easily used to derive identifiability
results. In addition, some authors point that pattern-mixture can be preferred to conduct
sensitivity analysis (Glynn et al., 1986; Miao et al., 2015; Little and Rubin, 2019, Chapter
15), as discussed in Section 1.5.4.

Council et al. (2010) propose an example to understand the different uses of the
specifications. In a clinical survey, for each decrease of 0.1 in quality of life, the chance of
being missing doubles, so that the natural specification is the selection models (I), as how
the occurrence of missing values is related to the data is known. If participants with missing
data have a 0.1 lower quality of life than those observed, the pattern-mixture models (II) fits
perfectly well, because in (1.19), the first term of the factorization fx|ys represents the data
distribution in the strata defined by different missing-data patterns (here, the participants
do not have the same distributions for those missing and observed).

To conclude, the MNAR specification choice mainly depends on the assumptions that
are the easiest to extrapolate from the data, i.e. assumptions on the missing-data mechanism
or assumptions on the distribution of the observed data and the missing data separetely.
However, keep in mind that the identifiability of MNAR models is not guaranteed (see
Section 1.5.2), and the choice of the MNAR specification, for example between the selection
models and the pattern mixture models, may facilitate proofs of identifiability.

As an alternative to selection models and pattern mixture models, some authors consider
for example the shared-parameter models (Beunckens et al., 2008; Creemers et al., 2010;
Kuha et al., 2018), in which a variable suject to the missingness, say X ;, and its missing-data
pattern M ; are linked through a latent (unobserved) variable.

1.5.2 Identifiability

Without loss of generality, the univariate setting (d = 1) is considered to present the notion
of identifiability. The parameters of the joint distribution fx ps are said identifiable if the
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joint distribution fx ps can be uniquely determined from the observed distribution fx ar—1.

Definition 7 (Identifiability of the parameters). The family of parameters (0,¢) is
identifiable if for all (X, M) and (X', M') of distributions parametrized by (0, ¢) and (6',¢'),

fxv=1(z,m =1;0,0) = fx p—1(z,m=1;0",¢") = (0,¢) = (¢, ¢)

Note first that M(C)AR data preserve parameter identifiability, i.e. if the model
parameters are identifiable without missing values, they remain identifiable with the missing
data. To illustrate this idea, the univariate case leads to

fxym=1(z,m =1;0,0) = fx(2;0) far—1x(m = 1x;¢) = fx(2;0) fr=1(m = 1; ¢),

with the last term proportional to fx(x;6), as the statistical analysis is only conducted on
the parameter of interest # and it is enough to have the identifiability of the parameters of
the distribution fx.

A key issue As pointed by Baker and Laird (1988) and more recently by Miao et al.
(2016), the identifiability is not guaranteed for MNAR mechanisms and many models lead to
non identifiable parameters, even if parametric assumptions are made. In particular, the
identifiability of the parameters of the data distribution 6 is conditional on the identifiability
of the parameters of the missing-data mechanism ¢, as illustrated in the following example.

Example 1 (Need of identifiability of the missing-data mechanism parameters?®). Let us
consider a binary matriz, X ~ B(p), containing MNAR values X = (1,NA,0,1,NA,0). We
cannot retrieve the parameter p of the binomial law of X without identifying the parameters
of the missing-data mechanism, i.e. the conditional law of M given X. Indeed, if X is
missing only if X is equal to 1, thus X = (1,1,0,1,1,0) and p = 2/3. If X is missing only if
X is equal to 0, X = (1,0,0,1,0,0) and p = 1/3. Thus, the parameter p is not identifiable,
because two equal observed distributions can lead to different parameters. One should consider
the conditional law of M given X.

Leveraging additional information To get identifiability guarantees, the idea is
simple: prior or additional knowledge about the missing-data mechanism should be added
(Molenberghs et al., 2008). The consequences of no prior information are for example
discussed empirically by Ipsen et al. (2020) or Tang et al. (2014) where consistencies of the
estimators are obtained only with the use of auxiliary information, even though neither work
adresses the identifiability issue.

In the parametric setting, Miao et al. (2016) prove the identifiability of parameters
in Gaussian data and mixture model. Their results require specific known forms of the
missing-data mechanism fysx, such as a logistic or probit model. The example below
illustrates their work for a self-masked mechanism and Gaussian data.

2This example is largely inspired by one of the lectures of Ilya Shipster.
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Example 2 (Identifiability of the parameters if the data are Gaussian and the mechanism
is probit (Miao et al., 2016)). Let us consider X ~ N(u,X) and let us assume that X may
contain self-masked MNAR wvalues, i.e.

fax (m = 1|z) = F(¢o + dxx),

where ¢ = (¢o, px) is the parameter of the missing-data mechanism. Miao et al. (2016)
states the identifiability of the parameters (u, X, ¢) by assuming the following

1. F is a known and strictly monotone distribution function.

2. The left tail decay rate of F' is not exponential, i.e.

5> 0, lim 2 _gor 4o,

z2——00 6_5

The first condition holds if the missing-data mechanism distribution is logistic or probit,
which are the most encountered specifications. However, the second condition is true only
for the probit distribution. Note that prior information on the form of the missing-data
mechanism s required to make the parameters identifiable. Besides, this result excludes a
wide variety of models, which shows that the study of the identifiability for MNAR data is
crucial.

More specifically, to add prior information in linear regressions models, a method to
make the parameters identifiable consists of using an instrument variable, called shadow
variable, which is independent from the missing-data pattern given the data. In particular,
assume that the outcome variable Y is missing and the covariates X are fully observed. A
shadow variable Z is associated with the missing variable Y, conditional on the observed
data X, but independent of the missing-data pattern M given both the missing variable Y
and the observed ones X. It can be formalized as follows,

17, ZXY|X and Z 1L M|(Y,X).

A direct acyclic graph (DAG) summing up this definition is drawn in Figure 1.5. Y is
caused by Z and X, i.e. Y = f(Z,X). M is caused by X,Y but not Z, i.e. the missing-data
mechanism fy7x y,z depends on X and Y but not on the shadow variable Z.

OO0
&

Figure 1.5: DAG for a shadow variable Z. The nodes in grey represent fully observed
variables and the edges from Z to Y means that Z causes Y.
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Semi-parametric models have been shown particularly adapted to address the identifiabil-
ity issue by using this method (Wang et al., 2014; Zhao and Shao, 2015; Miao and Tchetgen,
2018; Zhao and Ma, 2021).

Another similar technique to identify the parameters in a regression setting is to use an
instrumental variable Z independent of the missing variable Y conditional to X but related
to M conditional to X (see for example the work of Morikawa et al. (2017)). Roughtly
speaking, this technique switch the role of Z and Y compared to the shadow variable strategy.

37, ZXM|X and Z LY|X.

The terminology can be sometimes confusing. For example, latent variable models which
consider a shared-parameter model (Beunckens et al., 2008; Creemers et al., 2010; Kuha
et al., 2018) lead to identifiable parameters because they use an instrumental variable and
not a shadow variable.

Graphical-based methods Another part of the identifiability literature is interested to
exploit causal inference techniques by handling missing data using graphical models. The
latters encode assumptions on the missing-data mechanism well (Mohan et al., 2013; Ilya
et al., 2015) and allow to consider nonparametric settings. For discrete variables, Mohan
et al. (2013); Mohan and Pearl (2014); Ilya et al. (2015) develop algorithms to identify
the parameters. Recent works (Bhattacharya et al., 2020; Nabi et al., 2020) aim to unify
results on identification for graphical models, by giving a graphical condition under which
the data distribution is identified by the observed data distribution. In particular, Nabi et al.
(2020) prove that if X() corresponds to the missing variables, X(©) to the observed ones,
and M to the missing-data pattern, the full law (M, X, X(O))7 and thus the target data
law (X1, X)) is identified if the following conditions hold:

1. The mechanism is not self-masked, i.e. in a graphical point of view, the edge between
X _(jl) and M ; is not allowed.

2. There is no colluder, i.e. the following relation is not allowed: X.(jl) — M; «— M.
This result gives a sufficient condition to retrieve the target law (X(©, X™) but not a
necessary condition. In addition, they prove that such models are sub-models of the itemwise
conditionally independent nonresponse model (ICIN), which is a general manner to encode
not self-masking mechanisms containing no colluders, introduced by (Shpitser, 2016; Sadinle
and Reiter, 2017), when

Vie{l,...,d}, X; L Mj|(X k) (Mp)kzs

For the sake of clarity, the DAG associated to the ICIN model has been drawn in Figure 1.6
in the case of d = 3.
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Figure 1.6: DAG for the ICIN model for d = 3. The nodes in grey represent fully observed
variables and the edges from X 1 to X 5 means that X ; causes X ».

Mohan (2018) obtains identifiability guarantees for the self-masked mechanism by using
an auxiliary variable, which is actually the same method as the shadow variable. Similarly,
for continuous variables in a linear case, Mohan et al. (2018) show identifiability of the
parameters. Besides, Sadinle and Reiter (2019) consider sequential additive nonignorable
mechanism for which they also assume auxiliary information on the variables (use of auxiliary
information on marginal distributions such as the moments of the variables).

Even though the point of view of graphical models is presented as dissociated from the
methods of identifiability in semi-parametric models, the methods for making parameters
identifiable have similarities and would benefit from being unified.

# In this dissertation, Chapters 3 and 5 address the identifiability issue in a PPCA
model and in a model-based clustering.
1.5.3 Existing methods

Modeling the joint likelihood When the mechanism is MNAR, the maximization of
the full log-likelihood given in (1.3) should be considered (and the ignored version in (1.6)
discarded), the mechanism being not ignorable (see Section 1.2.3). In particular, as in Section
1.3.2, the EM algorithm can be derived for MNAR data and the inference is now conducted on
both the data distribution parameters 6 and the missing-data pattern distribution parameters
¢ (taking the notation of the selection models, but it does not exclude other specifications
as (I1)). Given (89, ¢(), the algorithm steps have the following form

e the E-step (Expectation) (at step r):
Q(0,¢;0",¢") = E[Lgu (0, ¢; X, M)| X0 M; 07, ¢7].

e the M-step (Maximization) (at step 7):

"1, ¢! € argmax Q(6, ¢;6", ¢").
6.6

If the continuous case and the selection models are considered, the E-step is written

QO &:0",¢") = Lm Fx(@50) fax (mlz; 8) oo ar (2O, mi 0, 6)da,
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where fX(1>| x(0) 3y denotes the conditional distribution of the missing component given the
observed ones and the missing-data pattern. This integral has an explicit form only in
rare cases. If sampling methods are used, the difficulty is to draw from the conditional
law qu)‘ x(0) py which is hard to model. To estimate the parameters of generalized linear
models when the covariates may have MNAR values, Ibrahim et al. (1999) propose an EM
algorithm using an adaptive rejection sampling in the E-step to draw from the conditional
law fx o x© -

Likelihood-based approaches, especially the EM algorithm, can be computationally costly
and require to model the missing-data mechanism. These parametric assumptions are often
untestable and the results can be very sensitive to departure from these assumptions (see
Section 1.5.4).

Besides, Tabouy et al. (2020) and Frisch et al. (2020) use a variational EM algorithm
for Stochastic Block Models and for Latent Block Model in presence of MNAR values.
Other likelihood-based approaches include an imputation and estimation procedure using
a kernel regression method for the exponential tilting model (Tang et al., 2014) and an
imputation method in a PPCA model using variational autoencoders (Ipsen et al., 2020). In
addition, some authors (Marlin and Zemel, 2009; Herndndez-Lobato et al., 2014; Wang et al.,
2019) consider a joint modeling of (X, M) and debiase existing methods for MCAR data,
for instance with inverse probability weighting approaches. Recently, De Chaumaray and
Marbac (2020) propose to perform clustering via a mixture model using the pattern-mixture
models to formulate the joint distribution.

Semi-parametric models The semi-parametric models (see the recent review of Tang
and Ju (2018)) consist of assuming parametric assumptions on a part of the joint distribution
(for example in (1.18), assuming that the data distribution is Gaussian) and of letting the
other part nonparametric. Most of the works consider the regression setting, where Y is the
outcome variable, which may contain MNAR values, and X is the fully observed covariates.
They focus on how to prove the identifiability (in most cases, using a shadow variable), how
to estimate the mean of the outcome and how to test the parametric assumptions.

For example, Miao et al. (2015); Miao and Tchetgen Tchetgen (2016) use a shadow
variable Z to get the identifiability and propose doubly robust estimators. In particular,
they consider the pattern-mixture model (1.19) and they introduce the odds-ratio function
OR(X,Y, Z), which measure the deviation between the distributions of the observed data
Jy|m=0,x,z and of the missing data fy|y/—1 x z. Their estimation is said doubly robust in
the sense that they require correct specification of the odds-ratios OR(X,Y, Z) and either of
the observed data distribution fy, 7 x a1 or of the missing-data mechanism fy;—1)y,x, but
not necessarily both.

Several authors have considered the case where the missing-data mechanism is specified
(the logistic distribution is often considered) but the data distribution is nonparametric.
The estimators then rely on pseudo-likelihood approaches (Zhao and Shao, 2015), empirical
likelihood inference (Liu et al., 2019) or inverse propensity weighting methods (Shao and
Wang, 2016; Morikawa et al., 2017). Recently, Zhao and Ma (2021) suggest a kernel estimation
method where they also consider nonparametric data distribution. They do not directly
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X1 X2 X3 X1 X2 X3
12 28 NA 12 28  MA
23 NA 89 23 ML 89
Xx- |32 6 2u|[xio- |32 6 «
NA 3 7 N 3 7

Figure 1.7: Illustration of the available-case analysis: if X is the data matrix, the statistical
inference will be conducted on X4, by considering only observed cells in X.

require to model the missing-data mechanism but only a working model (not necessarily
containing the true mechanism).

Note that all these models exclude the case of missing covariates X, which makes them
very case-specific. Besides, when some observations have outcome variables and others do
not, the machine learning community usually identifies this setting as a semi-parametric one.
For MNAR data, it refers to Class Distribution Mismatch introduced by Oliver et al. (2018).
A parallel with this literature would be worth making.

Very few works consider missing covariates for semi-parametric models, but Miao
and Tchetgen (2018) propose an inverse probability weighted estimator and address the
identifiability of such models using a shadow variable.

Available-case analysis without modeling the missing-data mechanism Although
semi-parametric methods may avoid the use of strong parametric assumptions on the missing
data, they can still have a heavy parametric estimation. Recent works propose to estimate
parameters in the available-case analysis. The latter refers to the method consisting of using
all observed case in X, as illustrated in Figure 1.7. In the linear regression case, (Tang et al.,
2003; Mohan et al., 2018) propose an estimation method without specifying the distribution
of missing data and calculated using only the observed information. Both works consider the
self-masked mechanism (1.2). This approach does not remove the rows containing missing
values, as the complete-case analysis, but only the cases encoded as NA.

#» In this dissertation, an EM algorithm is derived to deal with MNAR data for low-rank
models in Chapter 2 and for model-based clustering in Chapter 5. In Chapter 3, we propose
an estimation method for the probabilistic principal component analysis model using the
available-case analysis and without modelling the missing-data mechanism.

1.5.4 Sensitivity analysis

The MNAR assumption is nearly impossible to check, because the mechanism depends on the
unobserved data (d’Haultfoeuille, 2010). In particular, when the selection models (1.18) are
used, the conditional distribution of the missing data-pattern given the data fyx (including
missing variables) is untestable. However, the results can be sensitive to deviations from
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these assumptions (Kenward, 1998). What is called sensitivity analysis is assessing how
sensitive the method is to a deviation to its assumptions.

For the pattern-mixture models given in (1.20), several methods have been proposed to
test the assumptions. A classical strategy consists of testing if the distribution of the missing
individuals fx|p7—; differs from the one of the observed individuals fxy/—¢ (Council et al.,
2010; Leurent et al., 2018; Little and Rubin, 2019, Chapter 15). Let us take the example
given in Council et al. (2010) where the participants with missing data have a 0.1 lower
quality of life than those observed. Thus, it can be assumed that the missing individuals are
related to the observed ones by a scaled parameter ¢, X = ¢X (). The missing variables
are first imputed by using a method assuming a MAR mechanism (in this case, ¢ = 1). The
results are then analysed for several plausible values of c¢. It allows to assess how a deviation
from MAR could output to different results.

To conclude this section, keep in mind that the MNAR mechanism allows to model
many situations. Nevertheless, this flexibility comes at the cost of theoretical and practical
challenges, in particular the identifiability of the parameters and the sensitivity of the model
assumption.

1.6 Summary of the contributions

Although many methods are already available to deal with missing data, there are still
great challenges, depending on the type of missing data and on the statistical task. In this
dissertation, a particular attention is paid to considering realistic missing-data mechanisms
such as the MNAR one. We aim at proposing innovative methods, relying on both strong
theoretical and practical aspects, and meeting concrete needs in applications, especially those
posed by the Traumabase dataset. Note that the corresponding code for each piece of work
is available on my github account for reproducibility purposes.

In the first part of this dissertation, we consider low-rank models when MNAR values on
several variables can occur. The aim is two-fold: (i) the estimation of the model parameters
and (ii) the imputation of missing values. In Chapter 2, for a low-rank model with fixed
effects, an (accelerated) EM algorithm is considered to maximize the joint distribution of
the data and the missing-data pattern. Although this method is theoretically sound, the
missing-data mechanism has to be specified and the algorithm derived can be computationally
costly. To overcome this, an alternative strategy is proposed,which is free of specification
for the missing-data mechanism but does not rely on theoretical guarantees. In Chapter
3, for a low-rank model with random effects, a.k.a. a probabilistic principal component
analysis setting, we propose an estimation and imputation method that is free of any missing
mechanism modeling and that is theoretically sound. The model parameters are proven to
be identifiable and the estimators derived have the great advantage of being computed using
only the observed cases (the available-case analysis).

The second part of this dissertation addresses two specific scenarios of supervised and
unsupervised learning, widely encountered in the applications: the linear regression on the
one hand, and the clustering on the other hand. In Chapter 4, the aim is to study online linear
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Main topics \ Chapter 2  Chapter 3 Chapter 4 Chapter 5 App. A

Mechanisms MNAR MNAR MCAR MNAR
Section 1.2.2 (self-masked)  (general)  (heterogeneous)  (general)
EM algorithm

Section 1.3.2, 1.5.3 v v
Low rank models
Section 1.3.3
Debiasing algorithm

Section 1.3.4
Identifiability
Section 1.5.2

Linear regression

Section 1.4.1

Clustering
Section 1.4.3

MNAR

v v

v

Table 1.4: Indications for a parsimonious reading of the introduction (Chapter 1).

regression in presence of heterogeneous MCAR values in the covariates (i.e. each variable has
not the same probability of being missing). In order to estimate the model parameters, the
strategy consists of naively imputing the missing values and adapting the averaged stochastic
gradient algorithm to account for the imputation error. The proposed algorithm comes with
strong convergence guarantees. Note that in Appendix A, we also study a standard sparse
regression framework, in which the impact of missing values in the covariates is modelled
as a sparse corruption problem, whatever the type of missing data encountered. To solve
the latter, we derive a robust version of the Lasso-Zero strategy introduced by Descloux
and Sardy (2020). Finally, Chapter 5 is dedicated to clustering individuals of a dataset
containing MNAR values using a model-based approach. The identifiability question is
thoroughly studied, and the estimation of the mixture model parameters (and by doing so
the clustering) is performed using stochastic EM algorithms.

The third part presents our platform on missing values that bundles classical and recent
references on the subject, that gives an overview on the large variety of related R packages
and also gives some tutorials both on theoretical and practical questions (in R and Python).

For the sake of clarity, Table 1.4 gives indications on which parts of this introduction can
be read as a prelude to the corresponding chapter.

1.6.1 A low-rank model with fixed effects for MNAR data

Using a prior of a low-rank model with fixed effect, Chapter 2 focuses on estimation and
imputation with MNAR data. More precisely, the data matrix X € R™*? is considered as a
low-rank matrix © € R"*¢ corrupted by an additive Gaussian noise:

© with rank r < min{n, p},

X = 0O + ¢, where
{ €. S N(On, 0% Lxn), Vie {1,...,n},
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and to contain MNAR values. The aim is to estimate © and impute missing values in X. To
the best of our knowledge most of the existing methods reviewed in Section 1.3.3 do not
consider the case of MNAR data.

Our contribution is two-fold. We first propose to maximize the joint distribution of the
data and the missing-data pattern using an EM algorithm. The missing-data pattern is
modeled with the selection models specification and a self-masked mechanism is assumed. As
the E-step has no closed form, a Monte Carlo approximation is performed and coupled with
the Sampling Importance Resampling (SIR) algorithm (Gordon et al., 1993). The M-step is
penalized by the nuclear norm, i.e.

0" ¢! € argmax Q(O, ¢; 0", ¢") + A O],

and solved by using an accelerated proximal gradient algorithm, called Fast Iterative Soft-
Thresholding Algorithm (Beck and Teboulle, 2009), which converges faster than ISTA
presented in Section 1.3.3. However, the whole method can be computationally costly and
relies on the specification of the missing-data mechanism. The second contribution is to
suggest an efficient surrogate estimation, without specifying the missing-data mechanism, by
concatenating the data matrix and the missing-data mask as X?"¢ = [X, (1 — M)]. A low-
rank structure on this new matrix is assumed in order to take into account the relationship
between the variables and the mechanism. The optimization can thus be performed as if the
data were M(C)AR, because we assume that the information of the missing-data mechanism
is already encoded in (1,,xq— M). For this, we use the algorithm in (Robin et al., 2020) which
deals with mixed data, as X is assumed to contain continuous variables, and as (1,xq — M)
is a binary matrix.

Through a study on synthetic data, the model-based method proves to be extremely
relevant when few variables are missing and the implicit method, which models the mask
using a binomial distribution, is much less costly in terms of computation time and allows
a better imputation. The performances of our methods are assessed on the Traumabase
dataset, when the aim is to complete the data before using it to predict if the doctors
should administrate tranexomic acid to patients with traumatic brain injury, that would
limit excessive bleeding.

1.6.2 A low-rank model with random effects (PPCA) for MNAR data

In this chapter, we consider that the data matrix X is generated under a fully-connected
PPCA model, in the sense that the loading coefficients B are of full rank. In particular,

W= (Wi|...|Wn)T, with Wi ~ N(0,,Id,,) € R,
B of rank r < min{n, d},
aeRland1=(1...1)T e R,

€= (er]...len)T, with e, S N(0g,0%145q) € RY,

X =1la+ WB + ¢, with

where 02 and r are known. This model implies that the rows of X are independent and
Gaussian with mean « and covariance matrix ¥ = BT B + 021 ;,4. From a theoretical point
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of view, we first discuss and prove the identifiability of the parameters of the PPCA and of
the missing-data mechanism, by assuming a self-masked MNAR mechanism.

Then, in presence of (general) MNAR values, we propose a strategy to estimate the
coefficients matrix B based on estimations of the mean and the covariance matrix. We
show that they can be consistently estimated in the available-case analysis when only the
observed cases are used (see Section 1.5.3). In order to derive such estimators, we leverage
linear connections that can be established between variables under the fully-connected PPCA
assumption. Two strategies to derive mean and covariance estimators are suggested: by
using algebraic arguments or graphical models. The latter is inspired by (Mohan et al.,
2018), which considers linear models with a self-masked mechanism.

This method has the great advantage of being specification-free for the missing-data
mechanism and of dealing with MNAR data, possibly coupled with M(C)AR data, resulting
in a realistic missing scenario. To assess the proposed methodology, experiments are
conducted on synthetic data and on two real datasets including the Traumabase dataset and
a recommendation system dataset.

1.6.3 Debiased averaged SGD algorithm with heterogeneous MCAR data

Chapter 4 proposes a debiased averaged SGD algorithm to deal with heterogeneous MCAR
data in the linear regression case. In particular, (Y;, X; ) are assumed to be i.i.d. observations
such that

Y, = XzTB + €,

where V; e R, X; € R, and ¢; € R are respectively the outcome variable, the covariates and
the noise term for the individual i, and 8 € R? is the regression parameter. The aim is to
estimate the regression parameter, and then to solve the least-square optimization problem,
recalled here

B € argmingEy y[(V; — X;.8)%] := R(B).

We assume that there are incomplete variables in the covariates, and that each variable
may have different missing probability but independent of the values of the data (this is the
heterogeneous MCAR setting, more realistic than the MCAR one). To deal with missing
values, we propose to naively impute the missing values by zero in order to get complete
covariates X; = X; ©® (1,xqa — M;.) and to account for the imputation error by debiasing
the gradients of the averaged SGD algorithm. The latter has been shown to stabilise the
behaviour of the algorithm and reduce the impact of noise, resulting in better convergence
rates (Bach and Moulines, 2013). Instead of considering the iterates (i, the averaged SGD
uses the Polyak-Ruppert averaged iterates (;, (Polyak and Juditsky, 1992), which allow to
account for all the iterates and not to forget previous ones,

Br = Br—1 — @i (Br—1)

_ 1 &
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with g, the unbiased gradients, such that E[gr(8k—1) | Fxk—1] = VR(Bk—1), Fr—1 =
(X1, Y1, My oo, X1, Y1, My—q).

The literature considering such strategy of naively imputing the missing values and
adapting existing algorithms has been reviewed in Section 1.3.4. In particular, the SGD
algorithm is studied by Ma and Needell (2018) using the same strategy but this work assumes
MCAR data, is restricted to the finite-sample setting and is not suitable for the high-
dimensional setting. A detailed comparison is given in Chapter 4. The main contribution of
our work consists of adapting a powerful supervised learning algorithm to deal with missing
values, adapted both to the streaming setting, when the data arrive progressively, and to the
high dimension setting, without adding strong parametric assumptions. These are the main
advantages of our work compared to classical methods such as multiple imputation or the
EM algorithm.

From a theoretical point of view, under weak assumptions on the observations, we derive
a convergence rate of O(k~!) for our algorithm in the streaming setting. More particularly,
for a constant step-size a = i, our algorithm ensures that, for any k£ > 0, the excess of
theoretical risk is

2
B[R () - R9)] <  (vega+ 22
Va

The expected excess risk is upper bounded by a variance term, which increases with the rate
of missing values, and a bias term, which takes into account the initial distance between the
starting point 8° and the optimal point 3. This convergence rate is remarkable, because
it is optimal for the least-square regression and similar to the rate without missing values
(Bach and Moulines, 2013).

In order to assess the convergence behavior and the relevance of our algorithm, we conduct
experiments on synthetic data and on real datasets including the Traumabase dataset.

1.6.4 Model-based clustering with MNAR data

Chapter 5 addresses unsupervised learning when MNAR values occur. We consider the
model-based clustering, because our aim is two-fold: (i) to cluster the individuals and (ii) to
estimate the parameters of the distributions for each cluster (which also allows to impute
missing values). To this end, we model the MNAR mechanism by using selection models.
To our knowledge, the only work that considers MNAR data in model-based clustering
(De Chaumaray and Marbac, 2020) models the mechanism with pattern-mixture models,
which makes it unsuitable to estimate the density parameters or to impute missing values.
Our inference is conducted on the following full observed likelihood,

L(m,0,¢; X© M) = H (Lm f(xi;m,0) farx,z =1 (ma. | zi, 2 = 1;¢)d$§.1)> ,
=1 i

where f(z;;m, 0) = Zszl 7k fr(yi; Ok ) is the mixture model, with 7 = P(2;, = 1) and K the
number of clusters (unknown quantity). Our first contribution is to specify a large variety of
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mechanism distributions fysx 7z, -1, derived from the following general model,

fM|X,ZAk=1(mi. | 24, 2ik = 15 0) = P(fij + glfjxij)a (1.21)

where p is the cumulative distribution of any continuous distribution function. In this case,
the parameter of the mechanism is ¢ = (o, 5). For all ke {1,..., K}, for all j e {1,...,d},
the parameter &; ; represents the average effect of the link between the presence of missing
value for the variable j and the membership to the class k (i.e. this effect may not be the
same for all variables). The parameters f,fj represent the direct effect of missingness on the
variable j which depends on the class k. The model (1.21) makes it possible to consider
realistic processes that cause the lack of the data, but requires to estimate 2K d parameters,
which can be challenging. Consequently, we propose more parsimonious versions of the
MNAR model (1.21). For each of the sub-models, we discuss identifiability depending on
the data type (continuous, categorical or mixed) and we propose an estimation strategy,
using the EM algorithm or the SEM algorithm. The parameters for the sub-models which
consider that the effect of missingness depends on z are not identifiable in both categorical
and mixed cases. In addition, their estimation procedures turn out to be difficult, as they
involve the use of a SEM algorithm with the introduction of a latent variable.
An interesting sub-model is the following one

Ivxz=1(mi | zi, zi = 1;6) = p(&f), (1.22)

when the only effect of missingness is on the class membership k& which is the same for all the
variables. The parameters are identifiable in the continuous, categorical and mixed cases.

We illustrate the methods on synthetic data. In particular, we show the flexibility of the
MNAR model (1.22), for which the estimation method is based on a simple EM algorithm
which does not use costly sampling methods.

1.6.5 A resource website on missing values

Chapter 6 presents R-miss-tastic, our platform which aims to provide an overview of
standard missing values problems and methods, by providing relevant implementations
of methodologies. In particular, several pipelines in R and Python allow for a hands-on
illustration on how to handle missing values in various statistical tasks such as estimation
and prediction, while ensuring reproducibility of the analyses.
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Dealing with MINAR data in
low-rank models
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Chapter 2

Imputation and low-rank
estimation with MNAR data

This chapter corresponds to the paper
Imputation and low-rank estimation
with Missing Not At Random data,
published in Statistics and Computing,
2020, written with Claire Boyer and
Julie Josse.

Abstract

Missing values challenge data analysis because many supervised and unsupervised learning
methods cannot be applied directly to incomplete data. Matrix completion based on low-rank
assumptions are very powerful solution for dealing with missing values. However, existing
methods do not consider the case of informative missing values which are widely encountered
in practice. This paper proposes matrix completion methods to recover Missing Not At
Random (MNAR) data. Our first contribution is to suggest a model-based estimation strategy
by modelling the missing mechanism distribution. An EM algorithm is then implemented,
involving a Fast Iterative Soft-Thresholding Algorithm (FISTA). Our second contribution is
to suggest a computationally efficient surrogate estimation by implicitly taking into account
the joint distribution of the data and the missing mechanism: the data matrix is concatenated
with the mask coding for the missing values; a low-rank structure for exponential family
is assumed on this new matrix, in order to encode links between variables and missing
mechanisms. The methodology that has the great advantage of handling different missing
value mechanisms is robust to model specification errors.

The performances of our methods are assessed on the real data collected from a trauma
registry (TraumaBase®) containing clinical information about over twenty thousand severely
traumatized patients in France. The aim is then to predict if the doctors should administrate
tranexomic acid to patients with traumatic brain injury, that would limit excessive bleeding.
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2.1 Introduction

The problem of missing data is ubiquitous in the practice of data analysis. Main approaches for
handling missing data include imputation methods and the use of Expectation-Maximization
(EM) algorithm (Dempster et al., 1977) which allows to get the maximum likelihood estimators
in various incomplete-data problems (Little and Rubin, 2019). The theoretical guarantees of
these methods ensuring the correct prediction of missing values or the correct estimation of
some parameters of interest are only valid if some assumptions are made on how the data
came to be missing. Rubin (1976) introduced three types of missing-data mechanisms: (i)
the restrictive assumptions of missing completely at random (MCAR) data, (ii) the missing
at random (MAR) data, where the missing data may only depend on the observable variables,
and (iii) the more general assumption of missing not at random (MNAR) data, i.e. when
the unavailability of the data depends on the values of other variables and its own value.
A classic example of MNAR data, which is the focus of the paper, is surveys where rich
people would be less willing to disclose their income or where people would be less incline to
answer sensitive questions on their addictive use. Another example would be the diagnosis
of Alzheimer’s disease, which can be made using a score obtained by the patient on a specific
test. However, when a patient has the disease, he or she has difficulty answering questions
and is more likely to abandon the test before it ends.
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Missing not at random data When data are MCAR or MAR, valid inferences can be
obtained by ignoring the missing-data mechanism (Little and Rubin, 2019). The MNAR
data lead to selection bias, as the observed data are not representative of the population. In
this setting, the missing-data mechanism must be taken into account, by considering the
joint distribution of complete data matrix and the missing-data pattern. There are mainly
two approaches to model the joint distribution using different factorizations:

1. selection models (Heckman, 1979), which seem preferred as it models the distribution
of the data, say Y, and the incidence of missing data as a function of Y which is rather
intuitive;

2. pattern-mixture models (Little, 1993), which key issue is that it requires to specify the
distribution of each missing-data pattern separately.

Most of the time, in these parametric approaches, the EM algorithm is performed to estimate
the parameters of interest, such as the parameters of generalized linear models (Ibrahim
et al., 1999) and the missing-data mechanism distribution is usually specified by logistic
regression models (Ibrahim et al., 1999; Tang and Ishwaran, 2017; Morikawa et al., 2017), in
the case of selection models. In addition, the MNAR mechanism often is chosen self-masked
i.e. the lack of a variable depends only on the variable itself and only simple models have
been considered with cases where just the output variable or one or two variables are subject
to missingness (Miao and Tchetgen, 2018; Ibrahim et al., 1999). Note that recent works
based on graph-based approaches (Mohan and Pearl, 2021; Mohan et al., 2018) show that
in some specific setting of MNAR values, it is possible to estimate parameters for simple
models, such as the mean and variance in linear models, without specifying the missing value
mechanism.

Low-rank models with missing values In this paper, we focus on estimation and
imputation in low-rank models with MNAR, data. The low-rank model has become very
popular in recent years (Kishore Kumar and Schneider, 2017) and it plays a key role in many
scientific and engineering tasks, including denoising (Gavish and Donoho, 2017), collaborative
filtering (Yang et al., 2018), genome-wide studies (Leek and Storey, 2007; Price et al., 2006),
and functional magnetic resonance imaging (Candes et al., 2013). It is also a very powerful
solution for dealing with missing values (Josse et al., 2016b; Kallus et al., 2018). Indeed, the
low-rank assumption can be considered as an accurate approximation for many matrices as
detailed by Udell and Townsend (2017). For instance, the low-rank approximation makes
sense when either, one can consider that a limited number of individual profiles exist or,
dependencies between variables can be established.

Let us consider a data matrix Y € R™*P which is a noisy realisation of a low-rank matrix
© € R™*P with rank r < min{n, p}:

© has a low rank r,

e ~ N(0,0%I). (2.1)

Y = @—l—e,where{
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In the following, o is assumed to be known. Suppose that only partial observations are
accessible. We note the mask Q € {0, 1}"*P with

0. — 0 if y;; is missing,
| 1 otherwise.

where y is a realisation of Y. The main objective is then to estimate the parameter matrix
© from the incomplete data, which can be seen on the one hand as a denoising task by
estimating the parameters from the observed incomplete noisy data, and on the other hand
as a prediction task by imputing missing values with values given by the estimated parameter
matrix. A classical approach to estimate © with MAR or MCAR missing values are based
on convex relaxations of the rank, i.e. the nuclear norm and consists in solving the following
penalized weighted least-squares problem:

O € argming | (Y — ©) © Q% + )|, (2.2)

where |.|r and ||.||« respectively denote the Frobenius norm and the nuclear norm and © is
the Hadamard product. The main algorithm available to solve (2.2) consists in a proximal
gradient method, leading to iterative soft-thresholding algorithm (ISTA) of the singular value
decomposition (SVD) (Mazumder et al., 2010; Cai et al., 2010) in the case of a regularization
via the nuclear norm (note that this strategy is equivalent to perform an EM algorithm with
a nuclear norm penalization in the M-step, see Appendix B.2.2). Given any initialization
(for instance the missing values can be initialized to the mean of the non-missing entries), a
soft-thresholding SVD is computed on the completed matrix and the predicted values of the
missing entries are updated using the values given by the new estimation. The two steps of
estimation and imputation are iterated until empirical stabilization of the prediction. There
has been a lot of work on denoising and matrix completion with low-rank models, whether
algorithmic, methodological or theoretical contributions (Candes and Recht, 2009; Candes
and Plan, 2010). However, to the best of our knowledge most of the existing methods do not
consider the case of MNAR data.

Contributions In order to perform low-rank estimation with MNAR data, our first
contribution, detailed in Section 2.3.1, is to suggest a model-based estimation strategy by
maximizing the joint distribution of the data and the missing values mechanism using an
EM algorithm. More specifically, a Monte Carlo approximation is performed coupled with
the Sampling Importance Resampling (SIR) algorithm. Note yet that introducing such a
model for MNAR data does not prevent from handling Missing Completely At Random
(MCAR) or Missing At Random (MAR) data as well. Indeed, our model can only impact
variables of type MNAR, while the low-rank assumption will be enough to deal with other
types of missing variables. This approach, although theoretically sound and well defined,
has two drawbacks: its computational time and the need to specify an explicit model for
the mechanism, so to have a strong prior knowledge about the shape of the missing-data
distribution.

Our second contribution (Section 2.3.2) is to suggest an efficient surrogate estimation by
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implicitly modelling the joint distribution. To do so, we suggest to concatenate the data
matrix and the missing-data mask, i.e. the indicator matrix coding for the missing values,
and to assume a low-rank structure on this new matrix in order to take into account the
relationship between the variables and the mechanism. This strategy has the great advantage
that it can be performed using classical methods used in the MCAR and MAR settings
and that it does not require to specify a model for the mechanism. This approach can be
seen as connected to the following works. Harel and Schafer (2009) present a method to
handle missing data in a latent-class model where the missing covariates X are linked to the
missing-data pattern M by a latent variable n. In an example, they suggests treating M as
additional items alongside X, in order to make statistical inferences. Moreover, in the context
of decision trees used for classification, Twala et al. (2008) suggest an approach known as
missing values attribute where at each split, all the missing values can go on the right or on
the left. This can be seen as cutting according to the missing value pattern so it is equivalent
as implicitly adding M with the covariates X. Finally, from the optimization point of view,
we also suggest (Section 2.3.3) to use an accelerated proximal gradient algorithm, also called
Fast Iterative Soft-Thresholding Algorithm (FISTA) (Beck and Teboulle, 2009) which is an
accelerated version of the classical iterative SVD algorithm in the case of a penalization with
the nuclear norm.

The rest of the article is organized as follows. First, although the missing-data mechanism
framework is widely used, there are points of ambiguity in the classical definitions, especially
considering whether the statements hold for any value (from any sample) or for the realised
value (from a specific sample) (Seaman et al., 2013; Murray et al., 2018). Therefore, Section
2.2 is dedicated to specify a general and clear framework of the missing-data mechanisms
in order to remove ambiguities and introduce the MNAR mechanism being considered. In
Section 2.3, we present both proposals to address the MNAR data issue: by explicitly
modelling the missing mechanism or by implicitly taking it into account. Section 2.4 is
devoted to a simulation study on synthetic data. In Section 2.5, we apply the model-based
method to the TraumaBase® dataset in order to to assist doctors in making decisions
about the administration of an active substance, called the tranexomic acid, to patients with
traumatic brain injury. Finally, a discussion on the results and perspectives is proposed on
Section 2.6.

2.2 The missing-data mechanism: notations and definitions

In the sequel, we write the complete data matrix Y € R™*P of quantitative variables, whose
distribution is parameterized by ©. The missing-data pattern is denoted by M € {0, 1}"*P
and ¢ is the parameter of the conditional distribution of M given Y. We assume the
distinctness of the parameters, i.e. the joint parameter space of (0, ¢) is the product of the
parameter space of © and the one of ¢. We start by writing the most popular definitions
of Little and Rubin (2019) for the missing-data mechanism. By writing, ¥ = (Yobs, Ymis),
where Yyps and Yinis denote the observed components and the missing ones of Y respectively,
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they define:
p(M|Y;¢) = p(M;¢), VY, ¢ (MCAR)
p(M‘Y; ¢) = p(M’YobSS #), VYmis, ¢ (MAR)
p(M|Y; ¢) = p(M|Yobs> Yinis; gb)? V¢ (MNAR)

Note that all matrices may be regarded as vectors of size n x p (see Example 3). There
are mainly two ambiguities: (i) it is unclear whether the equations hold for any realisation
(y,m) of (Y, M), although it is widely understood as such and (ii) Yops and Yi,is are actually
functions of M, which is extremely confusing and explain why other attempts for definitions
and notations are necessary. Seaman et al. (2013) propose two definitions of the MAR
mechanism, for which they differentiate if (i) the statements hold for any values (from any
sample), the everywhere case (EC) (ii) or for the realised values (from a specific sample),
the realised case (RC). They also introduce a specific notation for the observed values of
Y, clearly written as a function o of Y and M: o(Y, M). By writing g and m the realised
values of Y and M for a specific sample, it leads to:

Yy, y*, m such that o(y,m) = o(y*, m)
p(M =m|Y =y;¢) = p(M =m|Y =y*;¢), (EC)

Yy, y* such that o(y,m) = o(y*,m) = o(y,m)
p(M =m|Y =y;9) = p(M =m|]Y =y*;¢), (RC)

We can illustrate these concepts with the following example:

Example 3. Let y = <i 130

vec(y) = (1 3 4 NA) is observed, thenm = (1 1 1 0) ando(g,m)= (1 3 4). The
data are realised MAR if

), that can be regarded as a vector vec(y) = (1 3 4 10). If

p(M = (1,1,1,0)]Y = y;¢) = p(M = (1,1,1,0)|[Y = y*; ¢),
Yy, y*, o(y,m) = o(y*,m) = (1,3,4)

p(M = (1717170)|Y = (1,3,4,&);¢) = p(M = (1717170)|Y = (1,3,4,b);¢>),Va,b

By extending the framework of Seaman et al. (2013), the MNAR mechanism can be
defined in the everywhere case and with the two following assumptions:

e the missing-data indicators are independent given the data,
e the MNAR mechanism is said to be self-masked, which assures that the distribution of

a missing-data indicator M;; given the data Y is a function of Y;; only.
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In the specific case of low-rank models, these both assumptions allow to have the
independence by unit and to make the computations easier.

Definition 8. The missing data are generated by the self-masked everywhere MNAR
mechanism if:

n p
(M Q’Y_y ¢ :an ng|y2]7 y VK¢

i=1j5=1

2.3 Proposition

Our propositions for low-rank estimation with MNAR data require the following comments on
the classical algorithms to solve (2.2). First, as in regression analysis there is an equivalence
between minimizing least-squares and maximizing the likelihood under Gaussian noise
assumption. Here as specified in Equation 2.1, the entries (Yj;);;’s are assumed to be
independent and normally distributed, for all ¢ € [1,n],j € [1,p]:

1

p(yij; O4) = (27702)‘1/%(_2(% =), (2.3)

It implies that we can show (in Appendix B.2.2) that the classical proximal gradient methods
to solve the penalized weighted least-squares criterion (2.2), such as iterative thresholding
SVD, can be seen as a genuine EM algorithm, maximizing the observed penalized likelihood.
Secondly, as detailed in Section 2.3.3, Equation 2.2 can be solved using a fast iterative
soft-thresholding algorithm (FISTA) (Beck and Teboulle, 2009).

2.3.1 Modelling the mechanism

Considering the framework of selection models (Heckman, 1979), the first proposition consists
in handling MNAR values in the low-rank model (2.1), by specifying a distribution for the
missing-data pattern M. Here, the missing data models M;; given the data Y;; are assumed
to be independent and distributed by a logistic model, Vi € [1,n],Vj € [1,p]:

p(Qij|yij; o) =[(1+ e—¢1j(yu—¢zj))—1](1—Qij)[1 —(1+ e—¢1j(yij—¢2j))—1]9ij7 (2.4)
where ¢; = (¢15, ¢2j) denotes the parameter vector for conditional distribution of M;; given
Y;; for all 1.

Then, the joint distribution of the data and mechanism can be specified. Due to
independence (see Definition (8)):

p
:an yzy» zy|?/z]a¢])'
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This leads to the joint negative log-likelihood:

n p

U6, ¢35, ) = = D7 > (O, 07); i, ig),

i=1j=1

with £((45, ¢); yij, Qi) = log(p((vij, ij); Oij, 5)), Vi, j. In practice, the parameters vector
¢ is unknown but viewed as a nuisance parameter, since our main interest is the estimation
of ©. To find an estimator ©, we aim at maximizing the following penalized joint negative
log-likelihood: o

(0, ¢) € argming 4£(0, ¢;y,Q) + A|O|s. (2.5)

It can be achieved using a Monte-Carlo Expectation Maximization (MCEM) algorithm,
whose two steps, iteratively proceeded, are given below:

e E-step: the expectation (taking the distribution of the missing data given the observed
data and the missing-data pattern) of the complete data likelihood is computed:

Q(0,6161,6) = Ey,,, [£(6, 65y, ) Yors, M:0 = 0,6 = 0] (2.6)

t+1)

e M-step: the parameters ol and Qg(tﬂ) are determined as follows:

Ol ¢+ € argming , Q(O, 9|0, 61)) + A .. (2.7)

The E-step may be rewritten as follows:
Lo Q 1-8Q;
Q0,6 2 Z oy

where

C1 = log(p(yij, ij; Oij» ¢5))

Cy = flog(p(yij, Qij; Oij, 05))p(yis| i éﬁ?, Qgg't))dyij
Note that the E-step is written as a sum of the E-steps for each (i, j)-th elements. If
the (i,7)-th element is observed, we do not integrate and it leads to the first term; the

second term corresponds to the missing elements. By the lack of a closed form for @), it is
approximated by using a Monte Carlo approximation, denoted as @, Vi € [1,n],Vj € [1,p]:

Qiy(0, 6160, ;" =—f210g vl 045)) + log(p(ijlvi 65)),

Skl

wo_ ) v i Qi =1,
where v;; = { zzkj otherwise, with z - the realisation of Z ~ p(v;;|Qj; @U ,qﬁj )
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Note that @ is separable in the variables © and ¢, so that the maximization for the
M-step may be independently performed for © and ¢:

6t e argmm Z Z Z —log(p 'Lj7 ©i5)) + AlO]« (2.8)
i=1j5= 1
R n p 1 Ns
Y e argmin 2 Z A Z log(p zg‘Uij%)) (2.9)
¢ 1=1j5=1 k=1

Classical algorithms can be used: (accelerated) proximal gradient method to solve (2.8)
and the Newton-Raphson algorithm to solve (2.9).

Moreover, for all i € {1,...,n} and j € {1,...,p} such that y;; is missing, we suggest
the use of the sampling importance resampling (SIR) algorithm (Gordon et al., 1993) to
simulate the variable z . The detail is given in Appendix B.3.1 and we take as a proposal
distribution a Gaussuam dlstrlbutlon

2.3.2 Adding the mask

We now propose to directly include the information of the mask while considering the
criterion (2.2), without explicitly modelling the mechanism, so that the new optimisation
problem is written as follows:

A 1
O € argming 5 [[2© Y[Q2] ~ [Q1] © O] + A[O].. (2.10)

where 1 € R"*P denotes the matrix such that all its elements are equal to 1, and [X1]|X2]
denotes the column-concatenation of matrices X; and Xs. To solve (2.10), we could use again
classical algorithms such as the (accelerated) iterative (SVD) soft-thresholding algorithm
(Section 2.3.3). However, this approach does not take into account that the mask is made
of binary variables and suggests that the concatenated matrix [Y © , ] is Gaussian.
Consequently, a better approach is to take into account the mask binary type by using
the low-rank model but extended to the exponential family. There is a vast literature on
how to deal with mixed matrices (containing categorical, real and discrete variables) in the
low-rank model (Udell et al., 2016; Liu et al., 2018; Cai and Zhou, 2013). Robin et al. (2020)
suggested such a method, by using a data-fitting term based on heterogeneous exponential
family quasi-likelihood with a nuclear norm penalization:

n p
@ € argmin@ Z Z Qij (i/z]@m + gj(@ij)) + )\”@H*, (2.11)
i=1j5=1

where g; is a link function chosen according to the type of the variable j. In our case, it
allows to model the joint distribution of the concatenated matrix [Y ® €, Q] of size n x 2p as
follows : (i) the data are assumed to be Gaussian, i.e. for all j € [1,p], gj(x) = x22"2 (ii) the
missing-data pattern can be modelled by the Bernoulli distribution with success probability
1/(1 + exp(—0yj)), i.e. for all j € [p+ 1,2p], gj(xz) = log(1l + exp(z)). To solve (2.11), a
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Penalized Iteratively Reweighted Least Squares algorithm called mimi (see (Robin et al.,
2020, page 12)) is used. The advantage of such a strategy is to better incorporate the mask
as binary features but this comes at a price of a more involved algorithm in comparison to
(2.10).

2.3.3 FISTA algorithm

To solve (2.2), (2.8) and (2.10) we suggest to use the FISTA algorithm, introduced by Beck
and Teboulle (2009), detailed in Appendix B.1, which corresponds to an accelerated version
of the proximal gradient method. The acceleration is performed via momentum. The key
advantage is that it converges to a minimizer at the rate of O(1/K?) (K is the number of
iterations) in the case of L-smooth functions.

This algorithm is of interest compared to the the non-accelerated proximal gradient
method, that is shown in Appendix B.2.1 to be implemented in softImpute-SVD in the R
package softImpute (see Hastie and Mazumder (2015)): it is known to converge only to the
rate O(1/K) (Beck and Teboulle, 2009, Theorem 3.1). To be more precise, another algorithm
has been suggested that uses alternating least-squares (Hastie et al., 2015) and departs from
the previous one by solving a non-convex problem: it relies on the maximum margin matrix
factorization approach (combined with a final SVD thresholding). Therefore, although
appealing numerically, the algorithm known as softImpute-ALS is proven to converge only
to a stationary point.

2.4 Simulations

The parameter © is generated as a low-rank matrix of size n x p with a fixed rank r» < min(n, p).
The results are presented for N simulations, for each of them: (i) a noisy version Y of O is
considered,

Y =0 +¢,

where € is a Gaussian noise matrix with i.i.d. centered entries of variance o2, (ii) MNAR
missing values are introduced using a logistic regression, resulting in a mask Q and (iii) only
knowing Y © €2, we apply different methods to denoise and impute Y:

(a) Explicit method (Model): in order to take into account the missing mechanism
modelling, we apply the MCEM algorithm to solve (2.5), as detailed in Section 2.3.1;
note that either FISTA or softImpute are performed in the M-step.

(b) Implicit method (Mask): the missing mechanism is implicitly integrated by concate-
nating the mask to the data, as detailed in Section 2.3.2. When the binary type of the
mask is neglected, FISTA or softImpute are used to solve (2.10). When taking into
account the binary type of the mask, solving (2.11) is done by mimi.

(¢c) MAR methods: they consist in classical methods for low-rank matrix completion, proved
to be efficient under the MCAR or MAR assumption, and that aim at minimizing
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(2.2). The missing values mechanism is then ignored. They encompass FISTA and
softImpute.

We also include in (b) and (c) the regularised iterative PCA algorithm (Verbanck et al., 2015;
Josse et al., 2016b) which uses another penalty than the nuclear norm one. We also compare
all the methods to the naive imputation by the mean (the estimation of © is obtained by
replacing all values by the mean of the column). We performed an extended simulation
study and other more heuristic methods have been tested, such as the FAMD and MFA
algorithms dedicated to mixed data or blocks of variables (Audigier et al., 2016a) but they
are not included in the article to make the plots more readable as the results were never
convincing. The results presented are representative of all the results obtained.

The results are presented for different matrix dimensions and ranks, mechanisms of
missing values (MAR and MNAR), and percentages of missing data. The code to reproduce
all the simulations is available on github https://github.com/AudeSportisse/stat.

Measuring the performance To measure the methods performance, two types of
normalized mean square errors (MSE) are considered:

Ell©-noa-af / E[lv o -2 (212)

E[G—GEL/ED@@} (2.13)

that are respectively the prediction error, corresponding to the error committed when we
impute values, and the total error, encompassing the prediction and the estimation error.
Some practical details on the algorithms are provided in the following paragraphs.

EM algorithm The stopping criterion used in the EM algorithm is the following:

“(:)(t) _ (:)(tfl)HF
[0 +6

N

where 6 = 1073 and 7 = 1072!. In addition, the E-step is performed with N, = 1000 Monte
Carlo iterations. The key issue of this method is the run-time complexity largely due to this
Monte Carlo approximation.

Tuning the algorithms hyperparameters When considering (2.2), (2.10) and (2.7),
the regularisation parameter A is chosen among some fixed grid G = {1, ..., A\js} to minimize
either the prediction or the total errors. In the regularised iterative PCA algorithm, the
hyper-parameter is the number of components to perform PCA, which can be found using

!Once the stopping criterion is met, T = 10 extra iterations are performed to assure the convergence
stability.
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cross-validation criteria. In the simulations, the noise level is assumed to be known. To
overcome this hypothesis, one can use standard estimators of the noise level such as the ones
of Gavish and Donoho (2017) and Josse et al. (2016b).

2.4.1 Univariate missing data

Let us consider a simple case with n = 100 and p = 4, the rank of the parameter matrix is
r =1 and 02 = 0.8. Assume that only one variable has missing entries. The missing values
are introduced by using the self-masked MNAR mechanism. The missingness probabilities
are then given as follows:

1
1 + e~ P1(yi1—¢2)

Vie [1 : n],p(Qﬂ = O‘yﬂ; ¢) (214)
The parameters of the logistic regression are chosen to mimic a cutoff effect, see Figure 2.1.
Indeed, extrapolating imputed values can be challenging and classical methods are expected
to introduce a large prediction bias. Given the previous parameters choice, the percentage of
missing values is 50% in expectation for the missing variable, corresponding to 12.5% missing
values in the whole matrix. In Figure 2.2, the three methods (a), (b) and (c) are compared
in such a setting, using boxplots on MSE errors for N = 50 simulations. In this MNAR
setting, the proposed model-based method (a), in red in Figure 2.2, aiming at minimizing
(2.5) -specially designed for such a setting- gives better results globally for the total error
with a significant improvement on the prediction of missing values (either when FISTA or
softImpute is used in the M-step of the MCEM algorithm).

In addition, the implicit methods (b), in green in Figure 2.2, working on the concatenation
of the mask and the data, either based on a binomial modeling of the mechanism (mimi,
solving (2.11)), or neglecting the binary feature of the mask (FISTA and softImpute, solving
(2.10)), do not lead to improved performance compared to the MAR method (c) (FISTA
and softImpute) in terms of prediction or estimation errors. On the contrary, the implicit
method (b) working on the concatenation of the mask and the data, based now on the
regularized iterative PCA improves both estimation and prediction errors compared to the
regular PCA algorithm used in the MAR method (c¢). However the obtained prediction error
does not compete with performance of regular MAR completion algorithms (FISTA and
softImpute).

Note also that the results of both SVD algorithms, softImpute and FISTA, are similar
in terms of estimation and prediction error, but FISTA has the advantage to improve the
numerical convergence to a minimizer.

In conclusion on the univariate case, (i) modelling the missing mechanism outperforms
any other method, particularly in terms of prediction error; (ii) implicit methods (b) have
limited interest, except to improve the regular PCA algorithm.

2.4.2 Bivariate missing data

We consider now a higher dimensional case: n = 100 and p = 50 and the rank of the
parameter matrix is r = 4. The noise level is 02 = 0.8, as in Section (2.4.1). The missing
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Figure 2.1: Introduction of MNAR missing values using a logistic regression (2.14), with
¢1 = 3 and ¢2 = 0. One can see that the the highest values of y;; are missing, mimicking a
cutoff effect.
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Figure 2.2: Univariate missing data: total error (left) and prediction error (right) for the
methods (a) in red, (b) in green and (c) in blue.
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Figure 2.3: Bivariate missing data: total error (left) and prediction error (right) for the
methods (a) in red, (b) in green and (c) in blue.

values are introduced on two variables by using the following MNAR mechanism, for all
i€[l,n] and j € [1,2],
1

1 + e~ 15 (¥ii—¢25)

p(Qij = Olyij; @) =

P15 = 3,025 =0if j =1,
P15 =2,¢95 =1if j=2.

This parameters choice leads to 50% missing values in Y; and 20% in Yo mimicking
a cutoff effect again. In Figure 2.3, the methods (a), (b) and (c) are compared in such a
setting, using boxplots on MSE errors for N = 50 simulations.

The model-based method (a), designed for the MNAR setting, give significant better
results than any other method in terms of prediction error. The mask-adding methods (b)
lead to no significant improvement compared to classical MAR methods, either by solving
(2.10) using FISTA, softImpute, or solving (2.11) via mimi. One can note that the PCA
algorithm still benefits from the concatenation with the mask in terms of prediction error,
but to a lesser extent than in the univariate case.

Overall, the poor performance of the mask-adding methods (b) can be explained by the
dimensionality issue and the small weight of the added mask variables. Indeed, in this higher
dimensional case with bivariate missing variables, only two informative binary variables
corresponding to the mask are really concatenated to a 50-column matrix.

Note that in terms of total error, the advantages of model-based methods (a) are no
longer visible, which can be explained by the very low percentage of missing data (1.5%)
(see Section 2.4.3 in which more missing values are considered).

where {
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2.4.3 Multivariate missing data

We consider now a multivariate missing data case for the following dimensional setting:
n = 100, p = 20 and r = 4. The missing values are introduced on ten variables by using the
following MNAR mechanism, for all ¢, 5 € [1,n] x [1,10],

1
B 14+ e 1(Wii—¢2)

p(Qij = 0yij; @)

Note that the parameters of the missingness mechanism are the same for each element, this
can be easily extended to a more general case. The parameters choice leads to 25% missing
values in the whole matrix. The results are presented in Figure 2.4 for N = 50 simulations
and different noise levels, o2 = 0.2,0.5 or 0.8.

First, one can note that the model-based method (a) provides the best result both
in estimation and prediction error regardless the noise level (and whatever FISTA or
softImpute used in the MCEM). Of course, this performance improvement comes at the
price of a computational cost due to the Monte Carlo approximations needed in the MCEM
algorithm.

Regarding the implicit methods (b), the mask-adding techniques handling the concatena-
tion of the data and the mask matrix as Gaussian (FISTA and softImpute) miss to improve
both estimation and prediction errors compared to their MAR version. However, the variant
mimi modelling the mask with a binomial distribution always largely outperforms MAR
methods (c¢) in terms of prediction (while the improvement in terms of estimation error
is only visible at a low noise level). Therefore, the mask-adding approach can implicitly
capture the MNAR missing mechanism, when the mask is really considered as a matrix of
binary variables. This comes at the price of a more involved algorithm mimi able to take
into account mixed variables, but that remains far less computationally expensive than the
model-based approach. Indeed, for an estimation/prediction of one parameter matrix ©, the
process time for a computer with a processor Intel Core i5 of 2,3 GHz is 0.0549 seconds for
the MAR method with softImpute, 3.215 seconds for the implicit method with mimi and
13.069 minutes for the model-based method with softImpute when 50% of the variables are
missing.

As a side comment, in this high-dimensional setting, one can note that the PCA algorithm
still benefits from adding the mask, which is a variant of method (b), compared to the
regular PCA method, both in estimation and prediction error. However the mask-adding
PCA algorithm only compete the mask-adding methods based on iterative SVD thresholding
(FISTA, softImpute) at a low noise level.

2.4.4 Sensitivity to model misspecifications

Deviation in the missing-data mechanism setting Here, the missing values are
introduced by using the MAR mechanism. It allows to test the stability of model-based
methods, designed for the MNAR setting, to a deviation in the missing mechanism. The
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Figure 2.4: Multivariate MNAR missing data: total error (left) and prediction error (right)
for the methods (a) in red, (b) in green and (c). Three noise settings are considered: on top
strong signal (02 = 0.2), middle noisy data (¢ = 0.5), bottom very noisy data (o2 = 0.8).
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Figure 2.5: Comparison of methods performance when the missing data are of type MAR
(for N = 50 simulations) with a rank one: total error (left) and prediction error (right) for
different methods and algorithms.

missingness probabilities are given as follows in such a setting:

B 1
14+ e 91(yiz—¢2)’

Vi e [1,n], p(Qi1 = Olyi2; ¢) (2.15)
meaning that the probability to have a missing value in Y; depends on the value of Y5.

First, let us consider the setting of Section 2.4.1, i.e. n =100, p =4, r = 1.

In Figure 2.5, we observe that the model-based method (a) improves both the estimation
and the prediction, which is not expected in a MAR setting. However, this can be explained
because of the rank is one which implies that there are only small differences between
MNAR and MAR (the second variable’s value is directly linked to the missing one’s value).
Consequently, modelling a MNAR mechanism is enough to retrieve information on such a
MAR missing mechanism.

To avoid this case, we consider the setting of Section 2.4.2, i.e. n = 100, p = 50, r = 4,
with a MAR missing mechanism as described by (2.15), however, the second variable involved
is chosen to be decorrelated from the missing one (which is possible given the rank is 4).
In such a case, there is no equivalence between the missing values that are simulated to
be MAR and the mechanism we model as MNAR. Figure 2.6 shows that the model-based
approach does not lead to any improvement compared to regular methods used for MAR
methods; but more importantly, it does not degrade the results either which highlights the
robustness of the approach with respect to deviations from the model.

Deviation in the logistic regression setting We now want to test the robustness of
our model-based method (a) to a misspecification of the logistic model, given by (2.4). To
do so, missing values are introduced by a MNAR missing-data mechanism based on the
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Figure 2.6: Comparison of methods performance when the missing data are of type MAR
(for N = 50 simulations) with a rank four (the MAR mechanism depends on a decorrelated
variable to the missing one): total error (left) and prediction error (right) for different
methods and algorithms.

following probit model, the missingness probabilities are then:
Vie[l,n],  p(Qia =0lyi;¢) = F(yin),

where F' is the quantile function the standard Gaussian cumulative distribution function.
Consider the setting of Section 2.4.1, i.e. n = 100, p = 4, r = 1. In Figure 2.7, we observe
that the model-based methods (a) globally improves the results for both errors (2.13) and
(2.12). Very similar results to the ones of Section 2.4.1 are obtained, meaning that the
model-based method (a) behaves well to a deviation of the logistic regression modelling.

2.5 Application to clinical data

2.5.1 Motivation

Our work is motivated by a public health application with APHP TraumaBase®2 Group
(Assistance Publique - Hopitaux de Paris) on the management of traumatized patients.
Major trauma, i.e. injuries that endanger a person’s life or functional integrity, have been
qualified as a worldwide public health challenge and a major source of mortality (first cause
in the age group 16-45) in the world by the WHO (Hay et al., 2017). Hemorrhagic shock
and traumatic brain injury have been identified as the lead causes of death. Effective and
timely management of trauma is crucial to improve outcomes, as delays or errors entail high
risks for the patient.

http://www.traumabase.cu/
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Figure 2.7: Univariate MNAR missing data parametrized with a probit model for N = 50
simulations: total error (left) and prediction error (right) for different methods and algorithms.
Note that the methods modeling the missing mechanisms use the logistic model.

2.5.2 Data description

A subset of the trauma registry containing the clinical measurements of 3168 patients with
brain trauma injury is first selected.

Our aim is to predict from pre-hospital measurements whether or not the tranexomic
acid® should be administrated on arrival at the hospital. In the dataset, the variable
Tranexomic.acid is the decision made by the doctors, which is considered as ground truth.
This variable is equal to 1 if the doctors have decided to administrate tranexomic acid, 0
otherwise.

Nine quantitative variables containing missing values are selected by doctors. In Figure
2.8, one can see the percentage of missing values in each variable, varying from 1.5 to 30%,
leading to 11% is the whole dataset. After discussion with doctors, almost all variables can
be considered to have informative missingness. For example, when the patient’s condition is
too critical and therefore his heart rate (variable HR.ph) is either high or low, the heart rate
may not be measured, as doctors prefer to provide emergency care. The heart rate itself
can then be qualified of self-masked MNAR, and the other variables, either of MNAR or
MAR. Both percentage and nature of missing data demonstrate the importance of taking
appropriate account of missing data. More information on the data can be found in Appendix
B.4.

In the following, two questions are addressed. Firstly, we compare the validity of the
imputation methods in terms of prediction of the tranexomic acid administration based on
the different imputed data. Secondly, we test the methods in terms of their imputation
performance.

3the tranexomic acid is an antifibrinolyic agent which reduces blood loss.
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Figure 2.8: Percentage of missing values in each variable.

2.5.3 Prediction of tranexomic acid administration
We consider a two-step procedure:

e Step 1: imputation of the explanatory variables. As a preprocessing step, we impute
missing data in the explanatory variables, beforehand proceeding to the classification
training. Imputation is performed using the model-based method (a), the implicit
methods (b) or the MAR methods (c). All these methods are compared to the naive
imputation by the mean.

e Step 2: classification task which consists in predicting the administration or not of the
tranexomic acid. Therefore, we are looking for the prediction function f such that

Z ~ f(Y'™P),

where Z € {0,1}"™ is equal to 1 (resp. 0) if the tranexomic acid is (resp. not)
administered, and Y™ e R™*P represents the nine imputed explanatory variables
discussed above. Based on these new-filled design matrices formed in Step 1, the
classification is always done using either random forests or logistic regression.

Since not administering tranexomic acid by mistake can be vital, for the training and
testing errors, we use a dissymetrized loss function where the cost of false negatives is
much more than of false positives as follows

. 1 «
I(2,2) = - Z wolyz=12-0y + w1l{z—02=1} (2.16)
i-1
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Model | Mask MAR
soft mimi  soft | soft PCA | mean
error | 12.5 16.0 15.8 | 14.8 13.6 | 13.0
sd 3.3 2.8 4.9 5.0 3.2 2.1
AUC | 85.4 83.9 84.6 | 84.6 85.5 | 85.2
sd 1.6 1.7 1.8 2.0 1.4 2.2
acc 79.5 778 776 | 786 79.9 | 80.7
sd 5.0 3.2 5.0 5.2 3.4 3.1
pre 47.5 45.0 45.1 | 46.5 45.2 | 48.7
sd 6.7 4.2 8.2 8.3 5.9 5.0
sen 76.5 78.1 78.2 | 77.4 724 | 76.0
sd 6.1 3.4 5.7 5.4 3.2 4.5
spe 80.2 77T 774 | 789 80.8 | 81.7
sd 7.2 4.4 7.2 7.3 4.6 4.6

Table 2.1: By using random forest for the classification. Comparison of the mean
of different prediction criteria over ten simulations (values are multiplied by 100). Error
corresponds to the validation error with the loss described in (2.16). AUC is the area under
ROC; the accuracy (acc) is the number of true positive plus true negative divided by the total
number of observations; the sensitivity (sen) is defined as the true positive rate; specificity
(spe) as the true negative rate; the precision (pre) is the number of true positive over all
positive predictions. The lines sd correspond to standard deviations. The three best results
are in bold.

where wy and w; are the weights for the cost of false negative and false positive
respectively, s.t. wg + w; = 1 and wy = bws.

The dataset is divided into training and test sets (random selection of 80 — 20%) and the
prediction quality on the test set is compared according to different indicators such as the
accuracy, the sensitivity, etc.

Table 2.1 compares results when random forests are used as a prediction method. In
this setting, mean imputation gives among the best results on all the metrics which is in
agreement with recent results on its consistency when used with a powerful learner, see
Josse et al. (2019). Nevertheless, the model-based method (a) is very competitive. The
proposed implicit methods result in the best performances in terms of the sensitivity which
is particularly relevant for the application.

Table 2.2 compares results when the prediction is performed with logistic regression. For
almost all criteria, and especially on sensitivity the model-based method (a) leads to the
best performances. The standard deviations are also smaller with the model based approach
in comparison with the implicit methods.

Therefore, the model-based method performs well regardless of the prediction method
used.
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Model | Mask MAR
soft mimi  soft | soft PCA | mean
error | 13.5 13.3 15,5 | 155 13.8 | 13.7
sd 2.4 4.5 3.9 3.9 3.3 2.1
AUC | 82.6 787 819 | 81.9 82.1 | 82.0
sd 2.4 2.3 24 |24 25 2.4
ace 80.1 79.3 776 | 77.6 79.6 | 79.8
sd 3.7 6.9 6.1 |61 5.1 3.3
pre 47.7 46.2 47.0 | 46.0 45.1 46.9
sd 4.1 7.9 6.4 5} 5.2 3.2
sen 74.8 67.0 73.7| 738 73.7 | 739
sd 5.1 4.4 76 |77 6.5 5.5
spe 81.3 82.0 784 |81l.1 81.0 | 784
sd 3.7 3.6 6.1 6.2 5.1 3.3

Table 2.2: By using logistic regression for the classification. Comparison of the
mean of different prediction criteria over ten simulations (values are multiplied by 100).
Error corresponds to the validation error with the loss described in (2.16). AUC is the area
under ROC; the accuracy (acc) is the number of true positive plus true negative divided by
the total number of observations; the sensitivity (sen) is defined as the true positive rate;
specificity (spe) as the true negative rate; the precision (pre) is the number of true positive
over all positive predictions. The lines sd correspond to standard deviations. The two best
results are in bold.

60



Chapter 2. Fized effect low-rank model with MNAR data 2.6. Discussion

0.7 = ;;

056- = i
T MAR
o g Mask
0.4- oo
Generic
0.3- = —!
Q ! ! QA
(Qe'z’ QQV eé\ 6'\\@

Figure 2.9: Comparison of the imputation error (for ten simulations).

2.5.4 Imputation performances

As the methods are initially designed for imputation, we perform simulations on the real
dataset. In order to be able to measure the quality of the imputation, some additional MNAR
values are introduced in the variable Shock.index.ph, which is a variable with MNAR missing
values (according to doctors) that contains initially 7% of missing values. The missing
values are introduced by using the self-masked mechanism described in (2.14). The choice
of parameters in the logistic regression leads to 35% missing values. In the model-based
method (a), the variables are scaled before each EM iteration to give the same weight to each
variable. Besides, the noise level o2 is estimated using the residual sum of squares divided
by the number of observations minus the number of estimated parameters as suggested by
Josse et al. (2016b),
oo Y = Xy wdil
np—nr—rp+r2’

where wu;, v; and d; are the singular vectors and the singular values from the singular value
decomposition of Y. We let r denote the rank of Y, estimated here using cross-validation
(Josse and Husson, 2012). In Figure 2.9, the three methods (a), (b) and (c) are compared
using boxplots of the prediction error over ten simulations. The proposed method (a),
designed for the MNAR setting, gives significantly smaller prediction error than other
methods. Besides, the other proposed methods (b), taking the mask into account, also
improve prediction errors compared to the classical MAR methods (c).

2.6 Discussion

In this article two methods have been suggested for handling self-masked MNAR data
in the low-rank context: explicit modeling of the mechanism or implicit consideration by
adding the mask. The first method is clearly the most successful in terms of prediction or
estimation errors. Moreover, it is robust to model misspecifications. However, one should
note that, on the one hand it can be computationally expensive, and then hardly scalable in
the high-dimensional multivariate missing setting and on the other hand, it is a parametric
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approach. Therefore, the implicit method handling both the data and the mask matrices,
when taking into account the binary distribution of the latter, may be regarded as the right
alternative. Both methods can handle MNAR and MAR data simultaneously.

As a take-home message, one should keep in mind that (i) if there are a few missing
variables, the model-based method is extremely relevant; and (ii) when many variables can
be missing, the implicit method, that models the mask using a binomial distribution, has
empirically proven to provide better imputation.

Note that the logistic regression assumption may seem restrictive but the proposed
approach could be easily adapted to other distributions such as the probit one.

We pointed out that when the rank is one, there are few differences between MAR and
MNAR, which implies that MNAR missing values could be handled without specifiying a
model. This is in line with the work of Mohan et al. (2018) in regression using graphical
models and it would be interesting to extend their work to low-rank models.

As directions of future research, one could also extend this work to data matrices
containing mixed variables (quantitative and categorical variables) with MNAR data, so
that the logistic regression model should include the case of categorical explanatory and
output variables.

In addition, in this paper, we focus on single imputation techniques where a unique
value is predicted for each missing value. Consequently, it can not reflect the variance of
prediction. It would be very interesting to derive confidence intervals for the predicted value,
for instance by considering multiple imputation methods (Rubin, 2004).
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Chapter 3

Estimation and imputation in
PPCA with MNAR data

This chapter corresponds to the paper
Estimation and imputation in
Probabilistic Principal Component
Analysis with Missing Not At Random
data, accepted at NeurIPS, 2020, written
with Claire Boyer and Julie Josse.

Abstract

Missing Not At Random (MNAR) values where the probability of having missing data
may depend on the missing value itself, are notoriously difficult to account for in analyses,
although very frequent in the data. One solution to handle MNAR data is to specify a model
for the missing data mechanism, which makes inference or imputation tasks more complex.
Furthermore, this implies a strong a priori on the parametric form of the distribution.
However, some works have obtained guarantees on the estimation of parameters in the
presence of MNAR data, without specifying the distribution of missing data (Mohan et al.,
2018; Tang et al., 2003). This is very useful in practice, but is limited to simple cases such
as few self-masked MNAR variables in data generated according to linear regression models.
We continue this line of research, but extend it to a more general MNAR mechanism, in
a more general model of the probabilistic principal component analysis (PPCA), i.e., a
low-rank model with random effects. We prove identifiability of the PPCA parameters. We
then propose an estimation of the loading coefficients, and a data imputation method. Both
are based on estimators of means, variances and covariances of missing variables, for which
consistency is discussed. These estimators have the great advantage of being calculated
using only the observed information, leveraging the underlying low-rank structure of the
data. We illustrate the relevance of the method with numerical experiments on synthetic
data and also on two datasets, one collected from a medical register and the other one from
a recommendation system.
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3.1 Introduction

The problem of missing data is ubiquitous in the practice of data analysis. Theoretical
guarantees of estimation strategies or imputation methods rely on assumptions regarding the
missing-data mechanism, i.e. the cause of the lack of data. Rubin (1976) introduced three
missing-data mechanisms. The data are said (i) Missing Completely At Random (MCAR)
if the probability of being missing does not depend on any values observed or missing, (ii)
Missing At Random (MAR) if the probability of being missing only depends on observed
values, (iii) Missing Not At Random (MNAR) if the unavailability of the data may depend
on both observed and unobserved data such as its value itself. We focus on this later case,
which is frequent in practice, and theoretically challenging. A classic example of MNAR data
is surveys about salary for which rich people would be less willing to disclose their income.

When the data is MCAR or MAR, statistical inference is carried out by ignoring the
missing data mechanism (Little and Rubin, 2019). In the MNAR case, the observed data
are no longer representative of the population, which leads to selection bias in the sample,
and therefore to bias in the parameters estimation when using for instance complete case
analysis. One solution to handle MNAR data, known as selection model (Little and Rubin,
2019), is to model missing data distribution; most of the time, by logistic regression models
(Ibrahim et al., 1999; Morikawa et al., 2017; Sportisse et al., 2020). This comes at the price
of an important computational burden to perform inference and is often restricted to a
limited number of MNAR variables. In the recommender system community, some authors
(Marlin and Zemel, 2009; Hernandez-Lobato et al., 2014; Ma and Chen, 2019; Wang et al.,
2019) suggest that not MCAR values can be handled using a joint modelling of the data
and mechanism distributions by matrix factorization; then they debiase existing methods for
MCAR data, for instance with inverse probability weighting approaches.
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In addition, a key issue of MNAR data is to establish identifiability, which is not always
guaranteed (Miao et al., 2016). The literature on this topic is abundant, both in the non-
parametric (Mohan et al., 2013; Mohan and Pearl, 2014; Ilya et al., 2015; Shpitser, 2016; Nabi
et al., 2020), and semi-parametric settings (Wang et al., 2014; Miao and Tchetgen, 2018).
For parametric models, in the case of multivariate regression, Tang et al. (2003) and Miao
et al. (2016) guarantee the identifiability of the coefficients of the conditional distribution of
Y| X, when Y is missing. Tang et al. (2003) estimate them by calculating the coefficient of
the distributions of X and X|Y using only observations with no missing values. Besides,
in a linear model with self-masked missing mechanism, i.e., the lack depends only on the
missing variable itself, Mohan et al. (2018) consider a related approach based on graphical
models, adopting a causal point of view. Despite the great advantage of not modeling the
distribution of missing values, the assumption of a self-masked MNAR mechanism and the
restriction to a linear model are yet strong.

Contributions. We consider a framework where the data are generated according to a
probabilistic principal components analysis (PPCA) (Tipping and Bishop, 1999) model.
Contrary to available works that handle only MAR data in PPCA (Ilin and Raiko, 2010),
we consider that the missing values mechanism can be MNAR (on several variables) and we
also consider the possibility of having different mechanisms in the same data (MNAR and
M(C)AR).

e We prove the identifiability of the PPCA model parameters in a self-masked MNAR
values setting encompassing a large set of self-masked mechanism distributions.

e For more general MNAR mechanism, we give a strategy to estimate the PPCA loading
parameters without any modeling of the missing-data mechanism and use it to impute
missing values.

e The proposed method is based on estimators for the mean, the variance and the
covariance of the variables with MNAR values. We show that they can be consistently
estimated. Two strategies lead to the proposed estimators: (i) the first one uses
algebraic arguments based on partial linear models derived from the PPCA model; (ii)
the second one is inspired by (Mohan et al., 2018) and uses graphical models and in
particular the so-called missingness graph.

e We derive an algorithm implementing our proposal. We show that it outperforms
the state-of-the-art methods on synthetic data and on two real datasets, collected
from a medical registry (Traumabase®) and from a joke recommender system (the
Jester Online Joke Recommender System Hahsler (2015)). The code to reproduce all
the simulations and the numerical experiments is available at https://github.com/
AudeSportisse/PPCA_MNAR.
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3.2 PPCA model with informative missing values: identifia-
bility issues

Setting. The data matrix Y € R™*? is assumed to be generated under a fully-connected
PPCA model (Tipping and Bishop, 1999) (a.k.a. a low-rank model with random effects), i.e.
by the factorization of the loading matrix B € R"*?P and r latent variables grouped in the
matrix W e R™*",

W = (Wi|...[Wn)T, with W; ~ N(0,,1d,«,) € R",
B of rank r < min{n, p},

aeRPand1=(1...1)T eR",

e=(er]...|en)T, with € ~ N(0p,02Id,x,) € RP,

Y = 1la+ WB + ¢, with (3.1)

for 02 and r known. In the sequel, Y; and Y respectively denote the column j and the
row i of Y. The rows of Y are identically distributed, Vi € {1,...,n}, Y; ~ N(a, ), with
Y = BT B + 0?1d,x,. We denote 2 € {0,1}"*P the missing-data pattern (or mask) defined as

follows:
0 if Yj; is missing,

Vie{l,...,n}, Vie{l,...,p}, Q@-j:{ (3.2)

1 otherwise.

Some variables Y, ,...,Y,,,, indexed by M := {mq,...,mq} < {1,...,p} (with d < p),
contain MNAR values. The other variables are considered to be observed (or M(C)AR see
Appendix C.2.5). We define a general MNAR mechanism where the probability to have
missing values may depend on the d MNAR variables but also on p — d — r other variables
that can be observed or M(C)AR!. The remaining r variables are called pivot variables and
can be observed or MCAR. More precisely, we denote the complementary of a set A as
A:={1,...,p}\A. The general MNAR mechanism is defined as follows, with J < M the set
of indices of the r pivot variables (|7| = r),

Vme MVie {1,...,n}, P(Qum = 1Y) = P(Qim = 1|(Vit) ye.r)- (3.3)

We also define a specific MNAR mechanism, called the self-masked MNAR mechanism as
follows. We assume that d variables are self-masked MNAR indexed by M and the p — d
other variables are MCAR (or observed), indexed by M , i.e, Vie {1,...,n},

Vme M, P(Qum=1]Y;) = P(Qm = 1|Yim). (3.4)

Model identifiability. We prove the identifiability of the PPCA model (see Appendix
C.1 for the complete proof), i.e. the joint distribution of Y can be uniquely determined from
the available information, in the self-masked missing values case. More particularly, assume
the following

!Note that it implies that d < p — .
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AO01. d variables are self-masked MNAR as in (3.4) and the p — d other variables are MCAR
(or observed). The missing-data distributions (Fn)mem and (Fj) o i7 are known strictly
monotone functions with a finite support, defined as follows, Vi € {1,...,n},

VmeM, P(Q, =1|Y;) = Fm(d)gn + d)?lnyzm)a
Vjie M, P(Qy=1]Y;) =P = 1) = Fj(¢;),

with ¢; € R and ¢y, = (4%, %) € R? the mechanism parameters.
A02. V(k:,é) € {1,...,]7}2, k#4, "W J.QAY

Note that under Assumption AO1., any function F,,, m € M can be considered, as a
logistic function while (Miao et al., 2016) presented many counterexamples when identification
fails considering the logistic distribution. A02. requires that the missing-data patterns are
independent conditionally to the data.

Proposition 9. Under Assumptions A01. and A02., the parameters (o, ) of the PPCA
model (3.1) and the mechanism parameters ¢ = (¢¢)eeq1,..py are identifiable. Assuming that
the noise level o2 is known, the parameter B is identifiable up to a row permutation.

3.3 Estimators with theoretical guarantees

In this section, we provide estimators of the means, variances and covariances for the
MNAR variables, when data are generated under the PPCA model described in (3.1). These
estimators are used to derive an estimator of the loading matrix B in (3.1). This makes it
possible to derive a new imputation method with MNAR data as detailed in Algorithm 1.
We denote J_; := J\{j} and assume
Al. Yme M, Vje J, (B_m (B_j/)j/ej_j) is invertible,
A2. Vme M, V] € j, Yj A1 Qm|(Yk)kem
Note that Assumption A1l. implies that B has a full rank r and that any variable in Y
is generated by all the latent variables? (named a ”fully-connected” PPCA). Assumption
A2. is implied by the general MNAR mechanism in (3.3).
We start by illustrating the methodology and the assumptions using an example in small
dimension, before turning to the general case.

3.3.1 Estimation of the mean of a MNAR variable

Consider a toy dataset where p = 3,7 = 2, in which only one variable is missing, M = {1}
and there are two pivots variables J = {2, 3}. Note that the MNAR mechanism is self-masked
in such a context, because Equation (3.3) leads to P(Q21 = 1]Y1,Y2,Y3) =P(Q21 = 1|Y;),
but the method can be extended to more general cases. Our aim is to estimate the mean of
Y1, without specifying the distribution of the missing-data mechanism.

2Tt does not require that the linear combination coefficients are non-zero.
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Using algebraic arguments. We proceed in three steps: (i) Al. allows to obtain
linear link between the pivot variables (Y2,Y3) and the MNAR variable Y. For instance,

Yo = By 310 + Bos13(11Y1 + Basi331Y3 + C, (3.5)

with ¢ a noise term, By_,; 310}, B2—1,3[1] and Ba_,1 33] the intercept and the coeflicients in
the model (the arrow 2 — 1,3 indicates the regression model of Y5 on Y; and Y3, while
the squared bracket represents the coefficient, for instance 3 for the coefficient of Y3) ; (ii)
Assumption A2., i.e. Yo 1L Q1|Y1,Y3, is required to obtain identifiable and consistent
parameters of the distribution of Y5 given Y1, Y3 in the complete-case when 2 ; = 1, denoted
as B§H1,3[0]’ Bgal,:s[l] and B§H1,3[3]’

(Ya2)ia,=1 = B5_1 300) + BooaspyYn + Booy g3 Ys +¢5 (3.6)

(note that the regression of Y; on (Y, Y3) is prohibited, as A2. does not hold); (iii) using
again A2.,

E[Y2]Y:1,Y3,Q1=1]=E [5541,3[0] + By s Y + By a5 Y|V Y.3] ;
and taking the expectation leads to
E[Yal = B5 1 310 + Byoor g B [Yal + B3y a5 E [Ya] -

The latter expression can be reshuffled so that the expectation of Y ; can be estimated: the
means of Y5 and Y3 are estimated by standard empirical estimators (it will be Assumption
A4. in the sequel).

Using graphical arguments. The PPCA model can be represented with structural
causal graphs (Pearl, 2003), as illustrated in Figure 3.1. The top left graph in which each
variable is generated by a combination of all latent variables, see Assumption A1l., can be
represented as the top right one, as Y; « W1 — Y is equivalent to Y1 < Y5 (see (Pearl,
2003, page 52)). Then, six reduced graphical models can be derived from the top right graph
(two instances are represented in the bottom). Indeed, a bidirected edge Y1 < Yo can be
interchanged (see (Pearl, 2003, rule 1, page 147)) with an oriented edge Y1 — Y, if each
neighbor of Y (i.e. Y or Y3) is inseparable of Y1 (see (Pearl, 2003, page 17)). The bottom
left graph can also be represented by Equation (3.5), which gives a connection between the
algebraic and graphical approaches.
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Figure 3.1: Graphical models for the toy example with one missing variable Y1, p = 3 and
r=2.

3.3.2 Estimation of the mean, variance and covariances of the MNAR
variables

In a general case, estimators of the mean, variance and covariances of the variables with
MNAR values can be computed one by one. We detail the results only for one variable
Y., m € M, but the results hold for several variables with MNAR values. In addition, the
other variables are considered to be observed for simplicity but they could contain MCAR
and MAR values as well, as explained in Appendix C.2.5. We adopt the algebraic strategy
here to derive estimators (see Appendix C.2 for proofs) but graphical arguments can also be
used to obtain similar results (see Appendix C.6). The starting point is to exploit the linear
links between variables, as described in the next lemma.

Lemma 1. Under the PPCA model (3.1) and Assumption A1., choose j € J. One has

Yj=Bjmg 0]+ 2 jom. g 11Y5 T Biom,g s mYom + €, (3.7)
Jj'ed—;

where = —2] eg B m.g_;11€5 — Bjsm,g_j[m]€m + €. 1S a noise term.
Bj—»m,j,j[ 0]s B]_,m“yﬁ[v] and BJ—»m,J,J- [m] are gwen in Appendiz C.2.1 and depend on
the coefficients of B given in (3.1).

Then we define the regression coefficients of Y; on Y,, and Y}, for k € J_; in the
complete case, that will be used to express the mean of a variable with MNAR values.

Definition 10 (Coefficients in the complete case). For j € J and k € J—j, let BJ_}m 7_,[0)’
B¢ ] and B¢

T [m T 1] be respectively the intercept and the coefficients standing for
the effects of Y on (Y., ,(Y]/)jlej_j) in the complete case, i.e. when §,, = 1:

(Y])|Qm:1 = jam J—; Z J—m,J_j j/ + B]cam,jij[m]ym + CC7 (38)
J'ed-;
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wlth CC = — Z]’/Ej,j B‘?Hm,j,j[j’]ﬁzjl — B]c'ﬂm,j,j [m]ﬁm + 63
Then, we make the two following assumptions:
A3. For all j € 7, for all m € M, the complete-case coefficients B]C._)m 75[0]
and B¢

j—>m,‘77]‘

C
’ Bj—"nJ—j [m]

(k] k € J_; can be consistently estimated.

A4. The means (a;);e7, variances (Var(Y;))jes and covariances (Cov(Y;,Yj))jes jre s,
of the r pivot variables can be consistently estimated.

Note that Assumption A4. is met whether the r pivot variables are fully observed.

Proposition 11 (Mean estimator). Consider the PPCA model (3.1). Under Assumptions
Al. and A2., an estimator of the mean of a MNAR wvariable Y,,, for m € M, can be
constructed as follows: choose j € J, and compute

& 1= & =B, [2 ~ 2jeg; Bioma i ’ (3.9)

j—om,J—j[m]

with (B;amg_j [k])ke{o,m}ujij estimators of the coefficients obtained from Definition 10.
Under the additional Assumptions A3. and A4., this estimator is consistent.

The proof is given in Appendix C.2.2. Proposition 11 provides an estimator easily
computable from all observed cells. Furthermore, different choices of Y;, j € J can be
done in Equation (3.9) and all the resulting estimators may be aggregated to stabilize the
estimation of ay,.

Proposition 12 (Variance and covariances estimators). Consider the PPCA model (3.1).
Under Assumptions A1. and A2., an estimator of the variance of a MNAR variable Y, for
m e M, and its covariances with the pivot variables, can be constructed as follows: choose a
pivot variable Y for j € J and compute

— — T —~ ~
(Var(Yon) Cov(Yom, (Vj)jes)) = (M) 7', (3.10)

assuming that o tends to zero, with ]\/4\]71 e RO+1x(r+1) ﬁj e R™*! detailed in Appendiz
C.2.3. These quantities depend on (Gjr)jres, G given in Proposition 11, on (@(Y.j’))j’ej
and on complete-case coefficients such as (B]C-,Hmji _/[k])k;e{m}ujij/ forj'e J.

Under the additional Assumptions A3. and A4., the estimators of the variance of Y.,
and its covariances with the pivot variables given in (3.10) are consistent.

The proof is given in Appendix C.2.3. Note that to estimate the variance of a MNAR
variable, only 7 pivot variables are required to solve (3.10) and r tasks have to be performed
for estimating the coefficients of the effects of Yz on (Yy)se(myoz, for all ke J.

All the ingredients can be combined to form an estimator X for the covariance matrix X.
Define

5= (Cov(v, Y2)) (3.11)

kote(l,...p}
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e if Y} and Y, have both consistent mean/variance estimators, then C/O\V(Yk, Yy) can
be trivially evaluated by standard empirical covariance estimators.

e if Y, is a MNAR variable and Y is a pivot variable, then C/(;/(Y,k, Yy) is given by
(3.10),

e if Y is a MNAR variable and Y, is not a pivot variable, i.e. £ € J\{k}, a similar
strategy as the one above can be devised. Then C/(;/(Y_k, Y,) is given by (C.35) detailed
in Appendix C.2.4 and for which some additional assumptions similar as the ones
above are required. This estimator relies on the choice of 7 — 1 pivot variables indexed
by j and H < J, and only necessitates to evaluate the effects of Y; on (Y;) jreqrpon
in the complete case.

3.3.3 Performing PPCA with MNAR variables

With the estimator 3 in (3.11) at hand, one can perform the estimation of the loading matrix
B in (3.1).

Definition 13 (Estimation of the loading matrix). Given the estimator 32 of the covariance
matriz in (3.11), let the orthogonal matriz U = (4] ... |d,) € RP*P and the diagonal matriz
D = diag(czl, do, ... ,cip) € RP*P withdy > dy > ... = dp > 0 form the singular value
decomposition of the following matriz ¥ — 021dpxp =: UDUT. An estimator B of B can be
defined using the r first singular values and vectors, as follows
B = D?0T = diag(dy, ..., d,) (@] ... |a])” (3.12)
The estimation of the loading matrix is used to impute the variables with missing values.
More precisely, a classical strategy to impute missing values is to estimate their conditional
expectation given the observed values. One can note that with ¥ = BT B + O'QIdpxp, the
conditional expectation of Y,,, for m € M given (Y) weif reads as follows

-1 T
E[Yn|(Yk)perr] = am + Zm,ﬂzﬂ’ﬂ (Y/W —ag)

with Em,/W = (Em7k)Ze/W’ E/\?J? = (Ek,k’)k,k’eﬂa YM = (Yk)keﬂ’ and Qg = (ak)keﬂ'
Definition 14 (Imputation of a MNAR variable). Set I':= BT B + 021dpx, for B given in

Definition 13. The MNAR variable Y., with m € M can be imputed as follows: for i such
that Qi,m = 0,

}A/:im = OAdm + fm7ﬂ7f_1 (YVZT* - dﬂ) (313)
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3.3.4 Algorithm

The proposed imputation method described in Algorithm 1 can handle the different MNAR
mechanisms, the self-masked MNAR case and the general MNAR cases where the probability
to have missing values on variables depends on both the underlying values and values of
other variables (observed or missing).

Algorithm 1 PPCA with MNAR variables.

Require: 7 (number of latent variables), o (noise level), J (pivot variables indices),
(mask).

1: for each MNAR variable (Y,,)mem do 6: Form 3, covariance matrix estimator in
2:  Evaluate &, the estimator of its mean (3.11).
given in (3.9) using the r pivot variables | 7: Compute the loading matrix estimator B
indexed by J. /\ given in (3.12).
3. Evaluate Var(Y,,), and Cov(Y,,,Y,) | 8 Compute I' = BTB + 0%1d,x,.
for £ € J, using (3.10). 9: for each missing variable (Y ;) do
4:  Evaluate (Tc;/(Y,m, Y,) for £ € J\{m} | 10: forAi such that €2;; = 0 do
using Proposition 28. 11: Y;; < Impute Yj; as in (3.13).
5: end for 12:  end for
13: end for

Algorithm 1 requires the set J, i.e. the selection of r pivot variables on which the
regressions in Propositions 11, 12 and 28 will be performed. If there are more than r
variables that can be pivot, we suggest selecting a bigger set (> r) and computing the final
estimator with the median of the estimators over all possible combinations. The efficiency of
this strategy is illustrated in Appendix C.3.

The estimators associated to any missing variable in the steps 1 to 5 are computed in
the complete case, i.e. with the rows for which the missing variable is observed. When the
pivot variables are also missing, the complete case corresponds to discarding all rows where
the pivot variables or the MNAR one are missing and not all rows containing missing values.
This could be problematic in the high-dimensional setting, but here the low-rank assumption
(r < min{n, p}) ensures that the number of pivot variables is small enough, so that the
complete case analysis will not result in discarding many rows of the dataset.

In order to estimate the coefficients in Definition 10, we use ordinary least squares despite
that the exogeneity assumption, i.e. the noise term is independent of the covariates, does
not hold. It still leads to accurate estimation in numerical experiments as shown in Section
3.4. Actually, the consistency required by Assumption A3. holds as the variance of the noise
tends to 0.
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3.4 Numerical experiments

3.4.1 Synthetic data

We empirically compare Algorithm 1 (MINAR) to the state-of-the-art methods, including

(i) MAR: our method which has been adapted to handle MAR data (inspired by (Mohan
et al., 2018, Theorems 1, 2, 3) in linear models), see Appendix C.7 for details;

(i) EMMAR: which consists in an EM algorithm to perform PPCA with MAR values
(Ilin and Raiko, 2010);

(iii) SoftMAR: a matrix completion method using an iterative soft-thresholding singular
value decomposition algorithm (Mazumder et al., 2010) relevant only for M(C)AR
values;

(iv) MNARparam: a matrix completion technique modeling the MNAR mechanism with
a parametric logistic model (Sportisse et al., 2020).

Note that Method (ii) is specially designed to estimate the PPCA loading matrix and not
to perform imputation, but this is possible combining Method (ii) with steps 8 and 9 in
Algorithm 1. This is the other way around for completion Methods (iii) and (iv), but
the loading matrix can be computed as in (3.12). Note also that Methods (iii) and (iv)
are developed in a context of low-rank models with fixed effects. They require tuning a
regularization parameter \: we consider an oracle value minimizing the true imputation error.
We also use oracle values for the noise level and the rank in Algorithm 1. These methods are
compared with the imputation by the mean (Mean), which serves as a benchmark, and the
naive listwise deletion method (Del) which consists in estimating the parameters empirically
with the fully-observed data only. A comparison of the methods in terms of computational
times is given in Appendix C.4.

Measuring the performance. For the loading matrix, the RV coefficient (Josse et al.,
2008), which is a measure of relationship between two random vectors, is computed between
the estimate B and the true B. An RV coefficient close to one means high correlation
between the image spaces of B and B. Denoting the Frobenius norm as |.|r, the quality
of imputation is measured with the normalized imputation error given by [(Y —Y)® (1 —
Q)2/1Y & (1 - Q)%

Setting. We generate a data matrix of size n = 1000 and p = 10 from a PPCA model
(3.1) with two latent variables (r = 2) and with a noise level ¢ = 0.1. Missing values
are introduced on seven variables (Y)iep1:7] according to a logistic self-masked MNAR
mechanism, leading to 35% of missing values in total. Results are presented® for one missing
variable Y; (same results hold for other missing variables). All the observed variables
(Yk)ke[s:10] are considered to be pivot. Figure 3.3 shows that Algorithms 1 is the only one

3For a given set of PPCA parameters, the stochasticity comes from the process of drawing 20 times the
latent variables, the additive noise and the missing-data pattern.
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Figure 3.2: Imputation error (left) and median of the RV coefficients for the loading matrix
(right).

which always gives unbiased estimators of the mean, variance and associated covariances
of Y. As expected, the listwise deletion method provides biased estimates inasmuch as
the observed sample is not representative of the population with MNAR data. Method (ii),
specifically designed for PPCA models but assuming MAR missing values, provides biased
estimators. Method (iv) improves on the benchmark mean imputation and on Method (iii)
as well as it explicitly takes into account the MNAR mechanism, but it still leads to biased
estimates probably because of the fixed effects model assumption. Figure 3.2 shows that
Algorithm 1 gives the best estimate of the loading matrix and the smallest imputation error.
Method (i), based on the same arguments as Algorithm 1 but considering MAR data, may
be considered as a second choice for this low-dimensional example as the biais is quite small
(yet not in higher dimension, see Appendix C.3).

Misspecification to the PPCA model. The data matrix Y € R™"*P of size n = 200 and
p = 10 is now generated under the fixed effects model such that Y = © + ¢, with © € R"*P
a low-rank matrix with » = 2 and € € R"*P a Gaussian noise matrix with ¢ = 0.1. Figure
3.4 shows that mean and variance estimators given by Algorithm 1 have a larger variance
than those given by Method (iv) precisely dedicated to this specific setting. But surprisingly,
Algorithm 1 provides less biased estimates than Method (iv).

In Appendix C.3, we report further simulation results, where we vary the features
dimension (p = 50), the rank (r = 5), the missing values mechanism using probit self-
masking and also multivariate MNAR (when the probability to be missing for a variable
depends on its underlying values and on values of other variables that can be missing) and
the percentage of missing values (10%, 50%). We obtain similar results as before, and as
expected, all the methods deteriorate with an increasing percentage of missing values but
our method remains stable.

In addition to the model misspecification experiment (assuming a fixed effect model), we
assess the robustness of the methods in terms of noise level and we evaluate the impact of
under- or overestimating the number r of latent variables. When the level of noise increases,
our method is very robust in terms of mean and variance estimations, and despite a bias
for some covariances estimations for large noise it outperforms competitors regarding the
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Figure 3.3: Mean (top left) and variance (top right) estimations of the missing variable
and covariances (bottom) estimations of Cov(Y1,Y3) (i.e. covariance between two missing
variables) and of Cov(Y,Y3g) (i.e. between one missing variable and one pivot variable).

True values are indicated by red lines.

o_oo—$-$L

-0.05-

-0.10-

-0.15- —

-0.20- $I

-0.25- —_
Lo <z S FSEEEP
S & § &
S §F &S

2§

0.20-&’
0.15-\—‘—1$$ $
0.10-
0.05- e |
S §FHES
S §F & <
7

Figure 3.4: Mean (left) and variance (right) estimations of Y; when data are generated

under the fixed effects model.
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imputation error. It also turns out that the procedure remains stable at a wrong specification
of the number r of latent variables.

3.4.2 Application to recommendation system data

To show the extent and feasibility of our methodology on real data, we detail the methodology
on the Jester dataset Hahsler (2015) of 5000 users who rated 100 jokes, with 27% of missing
values.

Discussion on the assumptions. First, considering MNAR and self-masking values is
plausible because users only rate jokes they like or dislike strongly or might be ashamed to
assume their taste for sexual jokes for instance. Then, Assumption A1l., which can be viewed
as a low-rank assumption for the loading matrix, makes sense in the rating context: any
variable (i.e. user preferences) can be expressed as a linear combination of r latent variables.
In particular, the first latent variable opposes individuals who like jokes about physics but
dislike jokes about sexuality, and conversely. Finally, Assumption A2. means that a user’s
non-response for a sexual joke given all jokes may depend on the scores of the sexual and
physical jokes but not on the musical and computer jokes.

Selecting the number r of latent variables and estimating the noise variance. In
practice, to select r, one could use complete observations only but this is not possible when
the number of features is large. As an alternative, we use a cross-validation strategy assuming
M(C)AR mechanism as detailed in Josse and Husson (2012). Algorithm 1 is robust to a
misspecification of the rank (see Appendix C.3) and thus a reasonable heuristic may already
be enough. With r at hand, the noise variance is obtained directly using weighted residual
sum of squares as in (Josse et al., 2016b). Without further information on the missing
mechanisms, we select the r pivot variables with the lowest missing rate.

Imputation performances. To assess the quality of our method, we introduce additional
MNAR values using a logistic self-masked mechanism in a chosen variable with an initial
rate of 33% and a final one of 65%. The other variables are considered M(C)AR. The
process is repeated 10 times. We compare our method to the EMMAR, SoftMAR. and add
an imputation method based on deep generative models Deep Gondara and Wang (2018).
The parametric method MNARparam is not performed as it does not scale on such large
data. Figure 3.5 shows that Algorithm 1 outperforms the competitors (mean imputation
corresponds to an error of 1).

3.4.3 Application to clinical data

We illustrate our method on the TraumaBase® dataset containing the clinical measurements
of 3159 patients with brain trauma injury (see Appendix C.5 for more information). Nine
quantitative variables, selected by doctors, contain missing values (11% in the whole dataset).

4Note that this method requires to be trained on a complete dataset.
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Figure 3.5: Imputation error for the Jester dataset.
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Figure 3.6: Imputation error for the TraumaBase dataset.

After discussion with doctors, some variables can be considered to have MNAR values, such
as the variable HR.ph, which denotes the heart rate. Indeed, when the patient’s condition
is too critical and therefore his heart rate is either high or low, the heart rate may not be
measured, as doctors prefer to provide emergency care.

As for the Jester dataset, we introduce additional MNAR values in the variable HR.ph
(which has an initial missing rate of 1%) using a logistic self-masked mechanism leading to
50% missing values. Both the rank and the noise level are estimated using the complete-case
analysis (1862 observations). The selection of the pivot variables was discussed with experts
(doctors) who identified M(C)AR variables. In Figure 3.6, Algorithm 1 gives significantly
smaller imputation error than other methods. In addition, a supervised learning task is also
performed in Appendix C.5 for which Algorithm 1 also gives the smallest prediction error.

3.5 Discussion

In this work, we propose a new estimation and imputation method to perform PPCA with
MNAR data (possibly coupled with M(C)AR data), without any need of modeling the
missing mechanism. This comes with strong theoretical guarantees as identifiability and
consistency, but also with an efficient algorithm. Estimating the rank in the PPCA setting
with MNAR data remains non trivial. Once the number of latent variables is estimated,
the noise variance can be estimated. A cross-validation strategy by additionally adding
some MNAR values is a first solution, but this definitely requires further research. Another
ambitious prospect would be to extend work to the exponential family to process count data,
for example, which is prevalent in many application fields such as genomics.
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Chapter 4

Debiased averaged SGD algorithm
with heterogeneous MCAR data

This chapter corresponds to the paper
Debiasing Stochastic Gradient Descent
to handle missing values, accepted at
NeurIPS, 2020, written with Claire
Boyer, Aymeric Dieuleveut and Julie
Josse.

Abstract

Stochastic gradient algorithm is a key ingredient of many machine learning methods,
particularly appropriate for large-scale learning. However, a major caveat of large data
is their incompleteness. We propose an averaged stochastic gradient algorithm handling
missing values in linear models. This approach has the merit to be free from the need of any
data distribution modeling and to account for heterogeneous missing proportion. In both
streaming and finite-sample settings, we prove that this algorithm achieves convergence rate
of (’)(%) at the iteration n, the same as without missing values. We show the convergence
behavior and the relevance of the algorithm not only on synthetic data but also on real data
sets, including those collected from medical register.
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4.1 Introduction

Stochastic gradient algorithms (SGD) (Robbins and Monro, 1951) play a central role in
machine learning problems, due to their cheap computational cost and memory per iteration.
There is a vast literature on its variants, for example using averaging of the iterates (Polyak
and Juditsky, 1992), some robust versions of SGD (Nemirovski et al., 2009; Juditsky et al.,
2011) or adaptive gradient algorithms like Adagrad (Duchi et al., 2011); and on theoretical
guarantees of those methods (Moulines and Bach, 2011; Bach and Moulines, 2013; Dieuleveut
et al., 2017; Shamir and Zhang, 2013; Hazan and Kale, 2011; Needell et al., 2014). More
globally, averaging strategies have been used to stabilize the algorithm behaviour and reduce
the impact of the noise, giving better convergence rates without requiring strong convexity.
The problem of missing values is ubiquitous in large scale data analysis. One of the key
challenges in the presence of missing data is to deal with the half-discrete nature of the data
which can be seen as a mixed of continuous data (observed values) and categorical data
(the missing values). In particular for gradient-based methods, the risk minimization with
incomplete data becomes intractable and the usual results cannot be directly applied.

Context. In this paper, we consider a linear regression model, for i > 1,
yi = X[ B* + e, (4.1)

parametrized by 8* € R, where y; € R, ¢; € R is a real-valued centered noise and X;. € R?
stands for the real covariates of the i-th observation. The (X;.)’s are assumed to be only
partially known, since some covariates may be missing: our objective is to derive stochastic
algorithms for estimating the parameters of the linear model, which handle missing data,
and come with strong theoretical guarantees on excess risk.
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Related works. There is a rich literature on handling missing values (Little and Rubin,
2019) and yet there are still some challenges even for linear regression models. This is
all the more true as we consider such models for large sample size or in high dimension.
There are very few regularized versions of regression that can deal with missing values. A
classical approach to estimating parameters with missing values consists in maximizing the
observed likelihood, using for instance an Expectation Maximization algorithm (Dempster
et al., 1977). Even if this approach can be implemented to scale for large datasets see
for instance (Cappé and Moulines, 2009), one of its main drawbacks is to rely on strong
parametric assumptions for the covariates distributions. Another popular strategy to fix the
missing values issue consists in predicting the missing values to get a completed data and
then in applying the desired method. However matrix completion is a different problem from
estimating parameters and can lead to uncontrolled bias and undervalued variance of the
estimate (Little and Rubin, 2019). In the regression framework, Jones (1996) studied the
bias induced by naive imputation.

In the settings of the Dantzig selector (Rosenbaum et al., 2010) and LASSO (Loh and
Wainwright, 2011), another solution consists in naively imputing by 0 the incomplete matrix
and modifying the algorithm used in the complete case to account for the imputation error.
Such a strategy has also been studied by Ma and Needell (2018) for SGD in the context
of linear regression with missing values and with finite samples: the authors used debiased
gradients, in the same spirit as the covariance matrix debiasing considered by Loh and
Wainwright (2011) in a context of sparse linear regression, or by Koltchinskii et al. (2011) for
matrix completion. This modified version of the SGD algorithm (Ma and Needell, 2018) is
conjectured to converge in expectation to the ordinary least squares estimator, achieving the
rate of (’)(%) at iteration n for the excess empirical risk, assumed to be p-strongly convex
in that work. However, their algorithm requires a step choice relying on the knowledge
of the strong-convexity constant p which is often intractable for large-scale settings. In a
non-linear setting, Yi et al. (2019) also propose a heuristic to debiase zero-imputation in
neural networks but their proposed algorithm comes with no guarantee of convergence.

Besides, the inverse probability weighting method (IPW) consists in keeping only complete
observations and on reducing the induced bias by reweighting the loss w.r.t. the complete
observations with their probabilities of completeness (Little and Rubin, 2019; Seaman and
White, 2013). However, in the IPW literature, weighting is often used to rebalance samples
with missing outcome but not in cases where there may be missing values in all covariates,
which would imply more complex debiasing expression than simply weighting the data.

Contributions.

e We develop a debiased averaged SGD to perform (regularized) linear regression either
streaming or with finite samples, when covariates are missing. The approach consists
in imputing the covariates with a simple imputation and using debiased gradients
accordingly.

e Furthermore, the design is allowed to be contaminated by heterogeneous missing values:
each covariate may have a different probability to be missing. This encompasses
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the classical homogeneous Missing Completely At Random (MCAR) case, where the
missingness is independent of any covariate value.

e This algorithm comes with theoretical guarantees: we establish convergence in terms
of generalization risk at the rate 1/n at iteration n. This rate is remarkable as it is (i)
optimal w.r.t. n, (ii) free from any bad condition number (no strong convexity constant
is required), and (iii) similar to the rate of averaged SGD without any missing value.
The same convergence rate is also obtained when the probabilities that variables are
missing are not known but estimated.

e In terms of performance with respect to the missing entries proportion in large
dimension, our strategy results in an error provably several orders of magnitude
smaller than the best possible algorithm that would only rely on complete observations.

e We show the relevance of the proposed approach and its convergence behavior on
numerical applications and its efficiency on real data; including the TraumaBase®
dataset to assist doctors in making real-time decisions in the management of severely
traumatized patients. The code to reproduce all the simulations and numerical
experiments is available on https://github.com/AudeSportisse/SGD-NA.

4.2 Problem setting

In this paper, we consider either the streaming setting, i.e. when the data comes in as it goes
along, or the finite-sample setting, i.e. when the data size is fixed and form a finite design
matrix X = (X1.|...|X,.)T €e R (n > d). We define D,, := o (Xi.,vi),i = 1,...,n) the
o—field generated by n observations. We also denote < the partial order between self-adjoint
operators, such that A < B if B — A is positive semi-definite.

Given observations as in (4.1) and defining f;(8) := ((Xi, 8 — 1:)? /2, the (unknown)
linear model parameter satisfies:

B* = argmin {R(B) := E(x, ) [fi(B)]}, (4.2)

BeRd

where Ex, .y denotes the expectation over the distribution of (X, y;) (which is independent
of i as the observations are assumed to be i.i.d.).

In this work, the covariates are assumed to contain missing values, so one in fact observes
X%?IA € (R U {NA})? instead of X;., as X}?IA = X;. O D;. + NA(1; — D;.), where ® denotes the
element-wise product, 15 € R? is the vector filled with ones and D;. € {0, 1}d is a binary
vector mask coding for the presence of missing entries in Xj., i.e. D;; = 0 if the (i, j)-entry is
missing in X;., and D;; = 1 otherwise. We adopt the convention NA x 0 = 0 and NA x 1 = NA.
We consider a heterogeneous MCAR setting, i.e. D is modeled with a Bernoulli distribution

D= ((5Zj> with (51']' ~ B(pj), (4.3)

1<i<n,1<j<d

with 1 — p; the probability that the j-th covariate is missing.
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The considered approach consists in imputing the incomplete covariates by zero in X}YA,
as X;. = X%?IA@DZ@ = X;.®D;., and in accounting for the imputation error in the subsequent
algorithm.

4.3 Averaged SGD with missing values

The proposed method is detailed in Algorithm 2. The impact of the naive imputation by
0 directly translates into a bias in the gradient. Consequently, at each iteration we use
a debiased estimate gi. In order to stabilize the stochastic algorithm, we consider the
Polyak-Ruppert Polyak and Juditsky (1992) averaged iterates 3y = k%rl Zf:o Bi.

Lemma 2. Let (Fi)r=o0 be the following o-algebra, Fi, = o(X1.,y1, D1. ..., Xk, Yk, D).
The modified gradient gi(Bk—1) in Equation (4.4) is Fr-measurable and a.s.,

E [gk(Br-1) | Fr—1] = VR(Br-1).

Algorithm 2 Averaged SGD for Heterogeneous Missing Data

Input: data X, y, o (step size)
Initialize By = 04.

Set P = dlag ((pj)je{l,,d}) € RdXd.
for k =1tondo

gk(/@k) = P_lf(k: (X;{P_lﬂk — yk) — (I — P)P_Qdiag <Xng) ﬁk (44)

Br = Br—1 _kajk(/@kflk) )
Bk = 7171 iz Bi = g Be—1 + 715k
end for

Lemma 2 is proved in Section D.2.1. Note that in the case of homogeneous MCAR

data, i.e. py = ... =pg = p € (0,1), the chosen direction at iteration k in Equation (4.4)
boils down to %Xk; (%X;{ﬂk — yk> — lp%pdiag (XkaT> Br, where diag(A) € R¥? denotes

the diagonal matrix containing either the diagonal of A if A € R?*9 or the vector A if A € R,
This meets the classical debiasing terms of covariance matrices Loh and Wainwright (2011);
Ma and Needell (2018); Koltchinskii et al. (2011) . Note also that in the presence of complete
observations, meaning that p = 1, Algorithm 2 matches the standard least squares stochastic
algorithm.

Remark 15 (Ridge regularization). Instead of minimizing the theoretical risk as in (4.2), we
can consider a Ridge regularized formulation: mingcga R(B)+ A|B]?, with X > 0. Algorithm 2
is trivially extended to this framework: the debiasing term is not modified since the penalization
term does not involve the incomplete data X,.. This is useful in practice as no implementation
s available for incomplete ridge regression.
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Remark 16 (Towards a more general MCAR setting). Note that we consider a specific
MCAR setting in Equation (4.3) in which the missing-data patterns were independent
(Dj 1L D ji,j # j'). However, an extended MCAR setting could allow coordinates of the
missing mask to be dependently missing. In such a case, we propose a new way of constructing
debiased versions of gradients, as gi(8) == (W ® (f(kf(,?))ﬁ — g P71 X with W e R4x4,
and Wij := 1/E[00k;] for 1 <1i,j < d. Regarding practical implementation, the matriz W
can be estimated, in particular using low-rank strategies on the missing pattern matriz.

4.4 Theoretical results

In this section, we prove convergence guarantees for Algorithm 2 in terms of theoretical
excess risk, in both the streaming and the finite-sample settings. For the rest of this section,
assume the following.

e The observations (X, yx) € R? x R are independent and identically distributed.
e E[|X4|?] and E[|yx|?] are finite.
e Let H be an invertible matrix, defined by H := E(x, . [XpXL].

The main technical challenge to overcome is proving that the noise in play due to missing
values is strutured and still allows to derive convergence results for a debiased version of
averaged SGD. This work builds upon the analysis made by Bach and Moulines (2013) for
standard SGD strategies.

4.4.1 Technical results

Bach and Moulines (2013) proved that for least-squares regression, averaged SGD converges
at rate n~! after n iterations. In order to derive similar results, we prove in addition to
Lemma 2, Lemmas 3 and 4:

e Lemma 3 shows that the noise induced by the imputation by zeros and the subsequent
transformation results is a structured noise. This is the most challenging part technically:
having a structured noise is fundamental to obtain convergence rates scaling as n=! —

in the unstructured case the convergence speed is only n=1/2 (Dieuleveut et al., 2017).

e Lemma 4 shows that the adjusted random gradients gi () are almost surely co-coercive
(Zhu and Marcotte, 1996) i.e., for any k, there exists a random “primitive” function
fk which is a.s. convex and smooth, and such that g = V fk . Proving that fk is
a.s. convex is an important step which was missing in the analysis of Ma and Needell
(2018).

Lemma 3. The additive noise process (gi(8%))r with 5* defined in (4.2) is Fr—measurable
and,

1. Yk =0, E[gr(8) | Fr=1] = 0 a.s..
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2. Yk =0, E[|gx(B)|? | Fx—1] is a.s. finite.
3. Yk = 0, E[gr(8%)3x(8*)"] < C(8*) = c(B*)H, with

P2, P,

c(6%)

(4.5)

Sketch of proof (Lemma 3). Property 1 easily followed from Lemma 2 and the definition of
B*. Property 2 can be obtained with similar computations as in (Ma and Needell, 2018,
Lemma 4). Property 3 cannot be directly derived from Property 2, since §i(8*)gr(8*)" <
|Gk (B*)|T leads to an insufficient upper bound. Proof relies on decomposing the external
product gx(8%)Jx(8*)T in several terms and obtaining the control of each, involving technical
computations. ]

Lemma 4. For all k = 0, given the binary mask D, the adjusted gradient gi(53) is a.s.

Ly p-Lipschitz continuous, i.e. for all u,v € RY, ||gx(u) — gr(v)| < Li.pllu —v| a.s.. Set

1
L :=sup Ly p < — max 1 Xe:|? as.. (4.6)
k,D Pm K

In addition, for all k = 0, gi(8) is almost surely co-coercive.

Lemmas 3 and 4 are respectively proved in Sections D.2.2 and D.2.3, and can be combined
with Theorem 1 in Bach and Moulines (2013) in order to prove the following theoretical
guarantees for Algorithm 2.

4.4.2 Convergence results

The following theorem quantifies the convergence rate of Algorithm 2 in terms of excess risk.

Theorem 17 (Streaming setting). Assume that for any i, | X;.|| < v almost surely for some
~ > 0. For any constant step-size o < ﬁ, Algorithm 2 ensures that, for any k = 0:

E[R (Br) - R(8")] < i (% + %g*) |

with L given in Equation (4.6), p,, = minj_; __q p; and c(5*) given in Equation (4.5).

Note that in Theorem 17, the expectation is taken over the randomness of the observations
(Xi:, yi, Di:)1<i<k- The bounded features assumption in Theorem 17 is mostly convenient for
the readability, but it can be relaxed at the price of milder but more technical assumptions
and proofs (typically bounds on quadratic mean instead of a.s. bounds, see e.g. Section 6.1.
in Dieuleveut et al. (2020)).
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Remark 18 (Finite-sample setting). Similar results as Theorem 17 can be derived
i the case of finite-sample setting. For the sake of clarity, they are made explicit
hereafter: for any constant step-size a < ﬁ, Algorithm 2 ensures that for any k < n:

2
E [R(Br) — R(B)]|Dy] < i ( velryd ﬁof*> with L given in Equation (4.6) and

1—valL Vo
() = Vo) (Eoemlopn) ) may <o X121 87

Remark 19 (Estimating missing probabilities (p;);). Algorithm 2 and the associated
convergence rate established in Theorem 18 require the knowledge of the missing probabilities
(pj)j. In practice, one could construct an estimator Bk using our algorithm with estimated
probabilities (pj);. In such a case, we can show that we preserve the convergence rate at 1/k.
More precisely, in the finite-sample setting, we can use the first half of the data to evaluate
the (p;);’s and the second half of the data to build By,. Under the additional assumptions of
bounded iterates and strong convewity of the risk, the resulting supplementary risk w.r.t. the
iterate By, built with the true (p;); is E[R(Bx) — R(Br)] = O(1/kpS ). This is formalized in
Theorem 1 of Appendix D.3, followed by its proof.

Convergence rates for the iterates. Note that if a Ridge regularization is considered,
the regularized function to minimize R(B3) + A||3]? is 2A-strongly convex. Theorem 17 and

Remark 18 then directly provide the following bound on the iterates: E [HBk - B*HZ] <

2
e (\/c(md N Ib’o—ﬁ*>
N\ 1ol Ja :

Additional comments. We highlight the following points:

e In Theorem 17, the expected excess risk is upper bounded by (a) a variance term,
that grows with the noise variance and is increased by the missing values, and (b) a
bias term, that accounts for the importance of the initial distance between the starting
point fy and the optimal one 3*.

e The optimal convergence rate is achieved for a constant learning rate . One could for
example choose a = %, that does not decrease with the number of iterations. In such
a situation, both the bias and variance terms scale as k~!. Remark that convergence
of the averaged SGD with constant step-size only happens for least squares regression,
because the un-averaged iterates converge to a limit distribution whose mean is exactly
B* Bach and Moulines (2013); Dieuleveut et al. (2020).

e The expected risk scales as n~! after n iterations, without strong convexity constant
involved.

e For the generalization risk R, this rate of n~! is known to be statistically optimal
for least-squares regression: under reasonable assumptions, no algorithm, even more
complex than averaged SGD or without missing observations, can have a better
dependence in n Tsybakov (2003).
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e In the complete case, i.e. when p; = ... = pg = 1, Theorem 17 and Remark 18
meet the results from Bach and Moulines (2013, Theorem 1). Indeed, in such a case,

(%) = Var(ex)-

e The noise variance coefficient ¢(8*) includes (i) a first term as a classical noise one,
proportional to the model variance, and increased by the missing values occurrence to
%W; (ii) the second term is upper-bounded by % 72| 8*|? corresponds to the
muﬁiplicative noise induced by the imputation by 0 and gradient debiasing. It naturally
increases as the radius 72 of the observations increases (so does the imputation error),

and vanishes if there are no missing values (p,, = 1).

Remark 20 (Only one epoch). [t is important to notice that in a finite-sample setting, as
covered by Remark 18, given a maximum number of n observations, our convergence rates
are only valid for k < n: the theoretical bound holds only for one pass on the input/output
pairs. Indeed, afterwards, we cannot build unbiased gradients of the risk.

4.4.3 What about empirical risk minimization (ERM)?

Theoretical locks. Note that the translation of the results in Remark 18 in terms of
empirical risk convergence is still an open issue. The heart of the problem is that it seems
really difficult to obtain a sequence of unbiased gradients of the empirical risk.

e Indeed, to obtain unbiased gradients, the data should be processed only once in
Algorithm 2: if we consider the gradient of the loss with respect to an observation k,
we obviously need the binary mask Dy, and the current point Sx_1 to be independent
for the correction relative to the missing entries to make sense. As a consequence, no
sample can be used twice - in fact, running multiple passes over a finite sample could
result in over-fitting the missing entries.

e Therefore, with a finite sample at hand, the sample used at each iteration should be
chosen without replacement as the algorithm runs. But even in the complete data case,
sampling without replacement induces a bias on the chosen direction Giirbiizbalaban
et al. (2015); Jain et al. (2019). Consequently, Lemma 2 does not hold for the empirical
risk instead of the theoretical one. This issue is not addressed in Ma and Needell
(2018), unfortunately making the proof of their result invalid /wrong.

Comparison to Ma and Needell (2018). Leaving aside the last observation, we can still
comment on the bounds in Ma and Needell (2018) for the empirical risk without averaging.
As they do not use averaging but only the last iterate, their convergence rate (see Lemma 1
in their paper) is only studied for p—strongly convex problems and is expected to be larger
(i) by a factor u~!, due to the choice of their decaying learning rate, and (ii) by a logn factor
due to using the last iterate and not the averaged one (Shamir and Zhang, 2013). Moreover,
the strategy of the present paper does not require to access the strong convexity constant,
which is generally out of reach, if no explicit regularization is used. More marginally, we
provide the proof of the co-coercivity of the adjusted gradients (Lemma 4), which is required
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to derive the convergence results, and which was also missing in Ma and Needell (2018). A
more detailed discussion on the differences between the two papers is given in Section D.1.

ERM hindered by NA. It is also interesting to point out that with missing features,
neither the generalization risk R, nor the empirical risk R, are observed (i.e., only
approximations of their values or gradients can be computed). As a consequence, one
cannot expect to minimize those functions with unlimited accuracy. This stands in contrast
to the complete observations setting, in which the empirical risk R, is known exactly. As
a consequence, with missing data, empirical risk loses its main asset - being an observable
function that one can minimize with high precision. Overall it is both more natural and
easier to focus on the generalization risk.

4.4.4 On the impact of missing values

Marginal values of incomplete data. An important question in practice is to
understand how much information has been lost because of the incompleteness of the
observations. In other words, it is better to access 200 input/output pairs with a probability
50% of observing each feature on the inputs, or to observe 100 input/output pairs with
complete observations?

Without missing observations, the variance bound in the expected excess risk is given
by Theorem 17 with p,, = 1: it scales as O (W) , while with missing observations it
Var(eg,)d C(X,B*)

R T3
by a factor p,,,! for the estimator derived from k incomplete observations than for k x p,
complete observations. This suggests that there is a higher gain to collecting fewer complete
observations (e.g., 100) than more incomplete ones (e.g., 200 with p = 0.5). However, one
should keep in mind that this observation is made by comparing upper bounds thus does
not necessarily reflect what would happen in practice.

increases to O ( ) . As a consequence, the variance upper bound is larger

Keeping only complete observations? Another approach to solve the missing data
problem is to discard all observations that have at least one missing feature. The probability
that one input is complete, under our missing data model is 1_[?:1 pj. In the homogeneous
case, the number of complete observations k., out of a k—sample thus follows a binomial law
keo ~ B(k,p?). With only those few observations, the statistical lower bound is Var(eg)d/keo.
In expectation, by Jensen inequality, we get that the lower bound on the risk is larger than
Var(e;)d/kp®.

Our strategy thus leads to an upper-bound which is typically p®~3 times smaller than
the lower bound on the error of any algorithm relying only on complete observations. For
a large dimension or a high percentage of missing values, our strategy is thus provably
several orders of magnitude smaller than the best possible algorithm that would only rely on
complete observations - e.g., if p = 0.9 and d = 40, the error of our method is at least 50
times smaller.
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Figure 4.1: Empirical excess risk (R,(8x) — Rn(8*)). Left: n = 103 and 100 passes. Right:
n = 10° and 1 pass. d = 10, 30% MCAR data. L is assumed to be known in both graphics.

Also note that in Theorem 1 and Lemma 1 in Ma and Needell (2018), the convergence
rate with missing observations suffers from a similar multiplicative factor O(p~2 + kp~3).

4.5 Experiments

4.5.1 Synthetic data

Consider the following simulation setting: the covariates are normally distributed, X;. .

N(0,%), where ¥ is constructed using uniform random orthogonal eigenvectors and decreasmg
eigenvalues 1/k, k =1,...,d. For a fixed parameter vector 3, the outputs y; are generated
according to the linear model (4.1), with ¢; ~ N(0,1). Setting d = 10, we introduce 30% of
missing values either with a uniform probability p of missingness for any feature, or with
probability p; for covariate j, with j = 1,...,d. Firstly, the three following algorithms are
implemented:

(1) AvSGD described in Algorithm 2 with a constant step size a = i,
(4.6).

and L given in

(2) SGD from (Ma and Needell, 2018) with iterates Sy+1 = Bk — i), (Bk), and decreasing

step size ai = ﬁ

(3) SGD_cst from (Ma and Needell, 2018) with a constant step size o =
given by (4.6).

ﬁ, where L is

Debiased averaged vs. standard SGD. Figure 4.1 compares the convergence of
Algorithms (1), (2) and (3), with either multiple passes or one pass, in terms of excess
empirical risk Ry, (8) — Rn(58*), with R,(8) :== 2 3" | fi(B). As expected (see Remark 20
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—— AvSGD_heterogeneous
--- AvSGD_homogeneous

104 4
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Figure 4.2: Empirical excess risk R, (8;) — R, (3*) for synthetic data where n = 10°, d = 10
and with heterogeneous missing values either taking into account the heterogeneity (plain
line) in the algorithm or not (dashed line).

and section 4.4.3), multiple passes can lead to saturation: after one pass on the observations,
AvSGD does not improve anymore (Figure 4.1, left), while it keeps decreasing in the
streaming setting (Figure 4.1, right). Looking at Figure 4.1 (right), one may notice that
without averaging and with decaying step-size, Algorithm (2) achieves the convergence

rate O <\/g), whereas with constant step-size, Algorithm (3) saturates at an excess risk

proportional to a after n = 103 iterations. As theoretically expected, both methods are
improved with averaging. Indeed, Algorithm 2 converges pointwise with a rate of (’)(%)

About the algorithm hyperparameter. Note that the Lipschitz constant L given in
(4.6) can be either computed from the complete covariates, or estimated from the incomplete
data, see discussion and numerical experiments in Section D.4.

Heterogeneous vs. homogeneous missingness. In Figure 4.2, the missing values are
introduced with different missingness probabilities, i.e. with distinct (p;j)1<j<a per feature, as
described in Equation (4.3). When taking into account this heterogeneousness, Algorithm 2
achieves the same convergence rates as in Figure 4.1. However, ignoring the heterogeneous
probabilities in the gradient debiasing leads to stagnation far from the optimum in terms of
empirical excess risk.

Increasing missing data proportions. Figure 4.3 shows the results of Algorithm 2 with
different percentage of missing values (25%, 50% and 75%). The more missing data there
are, the more the convergence rate deteriorates. This was expected, as the established
theoretical upper bound for the convergence in Theorem 17 increases as the probability of
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Rn(Bx) —Ra(B.) (n=10%, 1 pass)

10°
107!
1072
—— AVSGD p=0.25
1073 AVSGD p=0.5
—— AVSGD p=0.75
102 10° 107 10°

Figure 4.3: Empirical excess risk R, (8) — Rn(B8*) for synthetic data where n = 10°, d = 10
with 25% (green), 50% (orange) and 75% (red) missing values.

being observed gets smaller.

Polynomial features. Algorithm 2 can be adapted to handle missing polynomial features,
see Section D.5 for a detailed discussion and numerical experiments on synthetic data.

4.5.2 Real dataset 1: Traumabase® dataset

We illustrate our approach on a public health application with the APHP TraumaBase®
Group (Assistance Publique - Hopitaux de Paris) on the management of traumatized patients.
Our aim is to model the level of platelet upon arrival at the hospital from the clinical data
of 15785 patients. The platelet is a cellular agent responsible for clot formation and it
is essential to control its levels to prevent blood loss and to decide on the most suitable
treatment. A better understanding of the impact of the different features is key to trauma
management. Explanatory variables for the level of platelet consist in seven quantitative
(missing) variables, which have been selected by doctors. In Figure 4.4, one can see the
percentage of missing values in each variable, varying from 0 to 16%, see Section D.6 for
more information on the data.

Model estimation. The model parameter estimation is performed either using the AvSGD
Algorithm 2 or an Expectation Maximization (EM) algorithm Dempster et al. (1977). Both
methods are compared with the ordinary least squares linear regression in the complete case,
i.e. keeping the fully-observed rows only (i.e. 9448 rows). The signs of the coefficients for
Algorithm 2 are shown in Figure 4.4.

According to the doctors, a negative effect of shock index (ST), vascular filling (VE),
blood transfusion (RBC') and lactate (Lactacte) was expected, as they all result in low
platelet levels and therefore a higher risk of severe bleeding. However, the effects of delta
Hemocue (Delta. Hemocue) and the heart rate (HR) on platelets are not entirely in agreement
with their opinion. Note that using the linear regression in the complete case and the EM
algorithm lead to the same sign for the variables effects as presented in Figure 4.4.
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Variable Effect NA %
Lactate — 16%
A.Hemo + 16%
VE — 9%
RBC — 8%
SI — 2%
HR + 1%
Age — 0%

Figure 4.4: Percentage of missing features, and effect of the variables on the platelet for the
TraumaBase data when the AvSGD algorithm is used. “+” indicates positive effect while
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Figure 4.5: Prediction error boxplots (over 10 replications) for the Superconductivity data.
AvSGD complete corresponds to applying the AvSGD on the complete data, AvSGD and
Mean+AvSGD use the predictions obtained with the estimated parameters ﬁ,{}VSGD and

BT‘;“"SGD respectively.
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4.5.3 Real dataset 2: Superconductivity dataset

We now consider the Superconductivity dataset (available here), which contains 81
quantitative features from 21263 superconductors. The goal here is to predict the critical
temperature of each superconductor. Since the dataset is initially complete, we introduce
30% of missing values with probabilities (p;)i1<j<s1 for the covariate j, with p; varying
between 0.7 and 1. The results are shown in Figure 4.5 where a Ridge regularization has
been added or not. The regularization parameter A (see Remark 15) is chosen by cross
validation.

Prediction performance. The dataset is divided into training and test sets (random
selection of 70 — 30%). The test set does not contain missing values. In order to predict the
critical temperature of each superconductor, we compute 1 = X 41 B with B = BAVSGD
or BEM. We also impute the missing data naively by the mean in the training set, and apply
the averaged stochastic gradient without missing data on this imputed dataset, giving a
coefficient model BQVSGD. It corresponds to the case where the bias of the imputation has
not been corrected. The prediction quality on the test set is compared according to the
relative £o prediction error, ||§ — y|?/|y|?. The data is scaled, so that the naive prediction
by the mean of the outcome variable leads to a prediction error equal to 1. In Figure 4.5,
we observe that the SGD strategies give quite good prediction performances. The EM
algorithm is not represented since it is completely out of range (the mean of its prediction
error is 0.7), which indicates that it struggles with a large number of covariates. Note also
that the EM algorithm requires a distributional assumption on the covariates, which is not
the case of our method. As for the AvSGD Algorithm, it performs well in this setting.
Indeed, with or without regularization, the prediction error with missing values is very close
to the one obtained from the complete dataset. Algorithm 2 is shown to handle missing
polynomial features well even in higher dimensions, see Section D.5 for a detailed discussion
and large-scale experiments on the superconductivity dataset.

Comparison to other methods. For completeness, we ran the proposed algorithm on
the superconductivity dataset and compare it to two-step heuristics in which first, the
covariates are imputed (by the mean or by the ICE!iterative imputer that estimates each
feature from all the others) and then linear regression (LR) is performed on the completed
data. The coefficient of determination R? is plotted on Figure 4.6 (thus higher is better) for
the Superconductivity dataset with 60% of missing values. Our method greatly outperforms
all other methods, and follows closely the linear regression performed on the initial complete
data. One should note that the two-step heuristics considered here come with no theoretical
guarantee at all.

!sklearn. impute.IterativeImputer
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Figure 4.6: R? coefficients for the Superconductivity data with 60% MCAR values.

4.6 Discussion

In this work, we thoroughly study the impact of missing values for Stochastic Gradient
Descent algorithm for Least Squares Regression. We leverage both the power of averaging and
a simple and powerful debiasing approach to derive tight and rigorous convergence guarantees
for the generalization risk of the algorithm. The theoretical study directly translates into
practical recommendations for the users and a byproduct is the availability of a python
implementation of regularized regression with missing values for large scale data, which was
not available. Even though we have knocked down some barriers, there are still exciting
perspectives to be explored as the robustness of the approach to rarely-occurring covariates,
or dealing with more general loss functions as well - for which it is challenging to build a
debiased gradient estimator from observations with missing values, or also considering more
complex missing-data patterns such as missing-not-at-random mechanisms.
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5.1 Introduction

Clustering remains a pivotal tool for readable analysis of large datasets, offering a consistent
summary of datasets by grouping individuals. In particular, the model-based paradigm
(McLachlan and Basford, 1988; Zhong and Ghosh, 2003; Bouveyron et al., 2019) allows to
perform clustering, by providing interpretable models, valuable to understand the connections
between the constructed clusters and the features in play. This parametric framework
provides a certain plasticity by handling high dimensionality problems (Bouveyron et al.,
2007; Bouveyron and Brunet-Saumard, 2014), mixed datasets (Marbac et al., 2017), or
even time series and dependent data (Ramoni et al., 2002; Xiong and Yeung, 2004). The
counterpart of performing this multifaceted model-based clustering is the involved modelling
work for designing mixture models appropriate to the data structure.

In large scale data analysis, the problem of missing data is ubiquitous, since the more
data we have, the more missing values we have. Classical approaches for dealing with missing
data consist of working on a complete dataset (Little and Rubin, 2019), either by using only
complete individuals, or by imputing missing values. Both methods can raise huge problems
in the analysis. On the one hand, if we delete the missing values, the remaining observations
can form a too small subset or a biased subset of the population, which increases the variance
of the estimates. On the other hand, the imputation often leads to the overestimation of
the correlation between the variables and the model variance is underestimated. Moreover,
neither of both strategies are designed for the final clustering task. Thus, it is desirable to
develop some clustering methods able to deal with missing data in an efficient way.

Notations and typology of the missing values mechanisms To define the missing
values mechanisms correctly, some notations must be introduced. The full dataset consists
of n individuals Y = (y1]...|yn)T, where each observation y; = (y;1,...,%iq)" belongs to a
space ), depending on the kind of data, defined by d features. The pattern of missing data
for the full dataset is denoted by C = (c1|...|c,)T € {0,1}"*? ¢; = (ci1, ..., cia)! € {0,1}¢
being the indicator pattern of missing data for the individual i € {1,...,n}: ¢;; = 1 indicates
that the value y;; is missing and c¢;; = 0 otherwise. The observed variables values for
individual ¢ will be denoted by yfbs. Similarly the missing variables values for individual
1 is denoted by yl‘-nis. In addition, in a clustering context, the target is to estimate an
unknown partition of the whole dataset Y into K groups. This partition is denoted by
Z = (z1] ... |zn)T € {0,1}" K with z; = (zi1,...,2ix)" € {0,1} and where z;, = 1 if y;
belongs to cluster k, z;; = 0 otherwise. Consequently, in a clustering context, the missing
data are not only the values ylmis but also the partition labels z;.

Rubin (1976) distinguish three missing values mechanisms, namely Missing Completely
at Random (MCAR), Missing at Random (MAR) and Missing not at Random (MNAR). The
missing data are MCAR when the missingness is independent of all the values, missing or not,
and thus can be formalized by P(¢; | y;, zi;1) = P(¢;; 1), for all (missing or observed) values
(yi, zi), ¥ generically designating a parameter of the multinomial pdf on ¢;. The missing
data are MAR when the missingness is independent of the missing values, even if possibly

depending on some (or all) observed values, meaning that P(c; | y;, 2i5%) = P(c; | 42755 1)
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for all missing values (y™, z;). The M(C)AR mechanisms are said ignorable, because the
inference does not require the modelisation of P(¢; | y;, z;;¢). Finally, MNAR corresponds
to a missing-data mechanism which is not MCAR, or MAR. For such missing data, the
observed variables are not representative of the population. It is well known that the MNAR
mechanism is not-ignorable when the goal is to estimate the parameters of the mixture model
Little and Rubin (2019). The MNAR mechanism is actually also not-ignorable when the
aim is to recover the partition of the data. Therefore, as the MNAR mechanism is neither
ignorable for the density, nor for the clustering, dealing with such data does require the
specific modeling effort of P(¢; | yi, 2i; ).

MNAR data In this paper, the data are supposed to be MNAR which is very frequent in
practice (Ibrahim et al., 2001; Mohan et al., 2018). Examples may include surveys where rich
people would be less willing to disclose their income or clinical data collected in emergency
situations, where doctors may choose to treat patients before measuring heart rate. In both
cases, the missingness of income or heart rate depends on the missing values themself.

The missing-data mechanism must be generally taken into account (Little and Rubin,
2019) by considering the joint distribution of the data and the missing-data pattern. There
are mainly two approaches to formulate the joint distribution of the data and the missing-data
pattern: (i) the selection model (Heckman, 1979) which factorizes it into the product of the
marginal data density and the conditional density of the missing-data pattern given the data
i.e. P(yi,cilzi) = P(yi|2i)P(cilys, z;) (ii) the pattern-mixture model (Little, 1993) which uses
the product of the marginal density of the missing-data pattern and the conditional density
of the data given the missing-data pattern i.e. P(y;, ¢;|z;) = P(c;|2i)P(yilci, zi). In this paper,
we adopt the selection model strategy, as it is more intuitive to model the distribution of
the data (as usually done in parametric clustering approaches) and the cause of the lack
according to the data. Although this point of view requires to model the missing-data
mechanism, it allows to estimate the parameters of the model-based clustering and the data
density and possibly to impute missing values, which are out of reach in pattern-mixture
models.

Related works In order to handle missing values in a model-based clustering framework,
Hunt and Jorgensen (2003) have implemented the standard EM algorithm (Dempster et al.,
1977) based on the observed likelihood. More recently, Serafini et al. (2020) also propose an
EM algorithm to estimate Gaussian mixture models in the presence of missing values by
performing multiple imputations (with Monte Carlo methods) in the E-step. However, both
works only consider M(C)AR data.

In a partition-based framework, Chi et al. (2016) propose an extension of k-means
clustering for missing data, called k-Pod, without requiring the missing-data pattern to be
modelled, making it suitable for MNAR data. However, like k-means clustering, the k-Pod
algorithm cannot identify difficult cluster structures, since it relies on strong assumptions as
equal proportions between the clusters. De Chaumaray and Marbac (2020) have proposed
to perform clustering via a mixture model using the pattern-mixture model to formulate the
joint distribution, which makes the method not suitable to estimate the density parameters

97



Chapter 5. Clustering with MNAR data 5.1. Introduction

or to impute missing values. For longitudinal data, some authors (Beunckens et al., 2008;
Kuha et al., 2018) jointly model the measurements and the dropout process by using an
extension of the shared-parameter model, which is an other MNAR, model assuming that
both the data and the dropout process depend on shared latent variables. They introduce
for this a latent-class mixture model allowing classification of the subjects into latent groups.
However, the MNAR model is restricted to the case where the missingness may depend on
the latent variables but not on the missing variables themselves.

For MNAR data, and specifically in selection models, the main challenge to overcome
consists of proving the identifiability of the parameters of both the data and the missing-data
pattern distributions. In particular, Molenberghs et al. (2008) prove that the identifiability
does not hold when the models are not fixed, i.e. when there is no prior information on the
type of the distribution for the missing-data pattern. For fixed models, Miao et al. (2016)
provide identifiability results of Gaussian mixture and t-mixture models with MNAR data.
However, their identifiability results are restricted to specific missing scenarios in a univariate
case (one variable) and no estimation strategy is proposed. In this paper, their idenfiability
results are extended to more complex missing scenario and to the multivariate case.

Contributions. We present and illustrate a relevant inventory of distributions for the
MNAR missingness process in the context of unsupervised classification based on mixture
models. We then conduct an exhaustive study of the identifiability of the mixture model
parameters (m,6) and the missingness process parameters 1, under certain conditions
(including the data type and the link functions governing the missingness mechanism
distribution). This is a real issue in the context of MNAR data, as models often lead to
unidentifiable parameters. In the continuous case, all models lead to identifiable parameters.
In the categorical case, only the models for which the missingness depends on the class
membership only have identifiable parameters. For each model or sub-model, an EM or SEM
algorithm is proposed, implemented, and made available for reproducibility. We also prove
that concerning MNAR models for which the missingness depends on the class membership,
the statistical inference can be conducted on the augmented matrix [Y, C'] considering the
MAR mechanism instead; which is a real advantage, especially because the missing-data
mechanism does not have to be modelled in this case. Preliminary numerical experiments
assess the performances of the proposed algorithms for performing clustering with MNAR
data.

The rest of the chapter is organized as follows. Section 5.2 introduces the model-based
clustering in presence of missing-data. In Section 5.3, we propose an exhaustive zoology of
the possible MNAR specifications in the model-based clustering framework and we discuss
the different models. For each model, we address the identifiability issue in Section 5.4
and we propose an estimation strategy in Section 5.5. Section 5.6 is devoted to numerical
experiments on synthetic data in order to assess the performances of our methods.
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5.2 Missing data in model-based clustering

5.2.1 Mixture model as foundation

Model-based clustering relies on the assumption that yi,...,y, form an i.i.d. sample from
some mixture distribution (see for instance (McLachlan and Basford, 1988))

K

Flyizm,0) = mfrlyis ), (5.1)

k=1

where 7, = P(z;, = 1) is the mixing proportion of the k-th component (Zszl m, = 1 and
7 > 0 for all k € {1,...,K}), fr(-;0) is the pdf of the k-th component parameterized
by 0. The mixture distribution is then fully parameterized by © = (m,...,7x) and
0 = (01,...,0k). Different kinds of distributions can be considered, depending on the types
of features at hand.

e For continuous data, the space of each observation (y;)i=1,.n is Y = R? and a
current family for fi(-;0) is the d-variate Gaussian pdf, often noted ¢(-; 0), where
Or = (pr, 2k), 1k being the mean vector and Y being the covariance matrix (for
Gaussian mixture, see for example (McLachlan and Basford, 1988; Banfield and
Raftery, 1993)).

e For categorical data, one defines the space of each observation (y;)i=1,.n as Y =
{0,1}4 x ... x {0,1}% where £; is the number of levels for the feature j € {1,...,d}.
More precisely, if the j-th feature is categorical then it is one-hot encoded as follows
(yilj, .. ,yfj’f), where yfj = 1 if the j-th feature of the i-th individual takes the level £,
0 otherwise (¢ € {1,...,¢;}). In addition, one has fi(;6;) = H;-lzl Jrj(-:0k;) where
Or = (Ok1, - .,0kqa) and where fi;(-;0y;) is the multinomial distribution parameterized
by the vector 8; = (Gij,...,eig), with 9£j = }P’(yfj =1]zp=1)for Le{l,... ¢}

Thus, we have fi;(yij;0k;) = ngzl(%j)yfj. The product on j = 1,...,d in the
definition of f; indicates that the features are independently drawn conditionally to
the group membership, what is often referred as the latent class model (see (Geweke
et al., 1994)).

e For a combination of continuous and categorical data (the so-called mixed case, see
for example (Jorgensen and Hunt, 1996)), y;; denotes either a continuous feature or a
categorical one and adopts the corresponding notation related to its own type. In this
case, it is often simply assumed that all the variables are conditionally independent
knowing the group membership (McParland and Gormley, 2016). It means that group
distributions are the product of univariate Gaussian and multinomial distributions.
Consequently, the covariance matrix >, associated the set of continuous features is
restricted to a diagonal one. This apparently stringent assumption is made to ensure
that the continuous and categorical variables are treated on a fair playing field.
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5.2.2 Mixture parameter estimation with missing data

The mixture parameters (7, 6) and the parameter 1 of the missing-data mechanism have to
be estimated from the observed data which consist of the observed vectors (y2”);<;<, and
the patterns (¢;)1<i<n. The full observed model likelihood of the parameters (7, 6,1)) for the
datasets (Y, C) can be written as follows

L(7,6,4; Y™, C H Z J Plei [ yi zik = L) P(yi, zip = 1y, 0)dy;  (5.2)
i=1 k=1 YY"
where Y = {g; = (§i1, .-, Tid) € Vi : ;o = yfbs}. Note that in the case of the mixture
model (1.16), P(y;, zir = 1;7,0) = 7 fr(yi; O)-
In both the MCAR and MAR paradigms, this observed likelihood can be decomposed
into the following two likelihoods:

L(m,0,4;Y°%,0) = []P(ei | 47™) Z f P(yi, zik = 1;7,0)dy;

B mls
i=1

n

HL (s ¢; | o) x HL (m, 0; y9%%). (5.3)

In such a situation, and also provided that parameters 7, # and 1 are functionally independent,
the missing mechanism is said to be ignorable, meaning that estimating the mixture
parameters w and 6 are independent of any modeling of the missing-data pattern distribution

P(c; | y?™;4). Consequently, estimating 7 and 6 can be performed just by maximizing the
(usual) observed partial likelihood L(, 8;y9>) (Little and Rubin, 2019). Then, maximizing
this likelihood can be performed with (usual) algorithms such that the EM or the SEM ones
(Celeux et al., 1996; Nielsen et al., 2000) (see Section 5.5 for details).

General ignorability vs. ignorability for clustering A necessary and sufficient
condition to have an ignorable missing process for clustering is that the distributions
of ¢; are equal among the mixture components. Thus, we said that the missingness process
is ignorable for clustering if

Vi, (W) = te(yi, ¢i)
where
e Symis [ (Y3 O )y

re(y9™) = e
Syimis D1 mefe(yi; Oo)dy;

and
T Syimis Ty O6)P(ci | yi, zie = 1;90)dy;

K
Sylmis D1 mefe(yi 00)P(ci | i, zie = 159)dy;

However, under the MNAR assumption the missing mechanism is no longer ignorable,
even for clustering, and a specific estimation process for the vector parameter (7,6, ) is
needed. Obviously, it depends on the MNAR model, namely the assumptions made on the
missing-pattern distribution P(¢; | y4, 2i;1).

tk‘(yl? Ci) =
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5.3 Zoology of MNAR models in clustering

First, in a parsimonious perspective, we assume that the ¢;’s are independent conditionally
on the complete dataset

d
P(ei | yirzae = 1;9) = | [ Pleij | iz = 1;9). (5.4)
j=1

A general MNAR mechanism for ¢;; can be written as follows, by giving the probability
of missingness for the variable j given the data y; and the class membership z;; = 1,

P(cij = 1| yi, zir = 1;20) = p | oy + Brjyi; + Z Vi Yig | (5.5)
J'e{l,....d}\{s}

where p is the cumulative distribution function of any continuous distribution function and
¥ = (a,7, ) is the vector parameter of this MNAR model where

T Kd
a:(0411,...,ald,...,aKl,...,aKd) eR

V= (V125 oy Vids -+ s Vdls -+ > Vdd—1) " € RV

B=(Bits--sBds- - Brct,- -, Bra)’ € REY,

if the feature j is continuous. If the feature j is categorical, then By; = (B,ij, . ,ﬂfﬁj)T and
Y = (y}j,, . ,fyf;.i)T, when fixing B,ig = 7]@;: = 0 for identifiability reasons. By abuse of
notation, in the categorical case y;; € RY Brjyk; denotes the scalar product (By;, Yr;)-

This general MNAR mechanism seems to be over-parameterized. For instance, for a
binary dataset ) = {0, 1} x - - - x {0, 1}, the number of parameters is equal to 2Kd+d(d—1)
while, for instance, the most parsimonious mixture model on y, namely the latent class
model, has dK + K — 1 parameters. Thus, because (d + K)(d — 1) > —1 is always true, the
missingness model (5.5) has more parameters than the associated mixture model. Since we
are expecting that the individual data y convey more information on the partition z that the
pattern ¢ of missing data, it seems to be hazardous to allow the missing data modeling to be
more complex than the mixture model itself. Consequently, dramatically sparser versions of
the general MNAR model (5.5) have to be proposed.

It is firstly reasonable to assume that ;; = 0 (for all ' € {1,...,d}\{j}), meaning that
a given value is primary missing due to its own value far before the other variable values.

Therefore, the most complex model that we propose is the so-called MNARy* 27 model
MNARy"27: P(eij = 1| i, 2 = 1;9) = plag + Brsij), (5.6)
with ¢ = («, 5).

The parameters «ay; represent the effect of missingness on the k-th class membership
which depends on the variable j (i.e. the effect is not the same for all variables). The
parameters [3;; represent the direct effect of missingness on the variable j which depends on
the class k.
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5.3.1 Sparser models

Effect of the missingness on both the variable and the class membership Missing
model (5.6) can be broken down into the following particular cases:

MNARyzj: P(Cij =1 ‘ Yiy Zik = 1;1/)) = p(akj + 6]'3/1‘]‘), (57)
where 1 = (a, (B1,...,84)7).

MNARy*z: P(cij = 1| yi, zir. = 159) = p(ou + Brjvij) (5.8)

where ¢ = ((aq, ... ,ozK)T, B).

For the MNARyz’ model, the missingness has a different effect on class membership
depending on the variable and it has the same effect on a particular variable regardless
of the class. In the contrary, for the MNARy*~ model, we consider that the missingness
has the same effect on class membership for all the variables but it has different effect on
a particular variable depending on the class. Allowing the parameters 3;; and ay; to be
dependent on the classes or the variables respectively can be thought of as redundant. Thus,
we can consider that the effects on a particular variable and on the class membership are
respectively the same for all the classes and for all the variables. It is the purpose of the
following MNARyz model.

MNARyz: P(cij =1 | yi, 2z, = 1;9) = plo + Biyij) (5.9)

where ¢ = ((al, e ,OzK)T, (,81, - .,ﬂd)T).

Effect of the missingness only on the variable A special case of missing not at random
mechanisms, that is widely used in practice (Mohan, 2018), is the self-masked case, called
MNARy here, where the only effect of missingness is on the variable j and is the same
regardless of the class membership,

MNARy: P(cij = 1| yi, zie = 1;9) = p(ao + Bjyij) (5.10)

where 1) = (g, 1, ..., B4)T, with ag the intercept (considering yij = 1).
A slightly more general case can be considered by allowing the effect of missingness on
the variable j to depend on the class, as in the following MNARy* model,

MNARy*: P(cij = 1| yi, zir. = 1;9) = p(ao + Brjyij) (5.11)

where 1) = (ao, 3), with g the intercept (considering y;; = 1).

Effect of the missingness only on the class membership In the MNARZz model, we
consider that the only effect of missingness is on the class membership k& which is the same
for all variables,

MNARz: P(cij = 1| yi, zi = 1;9) = p(ag) (5.12)
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Effect on the Effect on the
variable j class Nb parameters
membership k
Depends Depends Dep‘ends Depends Continous Categorical
on j on k on j on k
k.Jj
?g%my : v v v v 2Kd | K(d+ X0, (6—1)
J
1(\(/51%&1@2 v X v v (K+1)d | Kd+Y0 (6 —1)
MNARy*z
(58) 4 v v X v K(d+1) | K0+ (4 1)
MNARyz
(5.9) Y v X X v (K +d) K+Y0 (6 -1)
MNAR,
(5.10) 4 v X X X d+1 S -1 +1
k
gﬁ%}‘y v v X X Kd+1 | KX (6-1)+1
MNARz
(5.12) X X X v K K
MNARzJ
(5.13) X X v v Kd Kd
MCAR
(5.14) X X X X 1 1

Table 5.1: Effect of missingness and their dependencies for the models that we consider. The
last column indicates the corresponding number of parameters for each model.

where 1 = (ay,...,ag)"
Finally, the MNARZz’ model is a slightly more general case than the MNARz model,

because the effect of missingness on the class membership k£ is not the same for all the
variables,

MNARZ: P(eij = 1] yi, zie = 1;4) = p(owj) (5.13)
where Y = a.
MCAR model The last model that we consider is the naive one, which assumes MCAR
values, i.e. each value has the same probability to be missing.
MCAR: ]P)(Cij =1 | Yis Zik = l,w) = p(ag), (514)

where 1) = . This model is included in all the others.

For more clarity, Figure 5.1 gives the embedding between the different models. In
addition, Table 5.1 shows the effects of missingness and their dependencies for each model
and their corresponding number of parameters.
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MNARy* 27

/ \.

MNARyz/

MNARy*z

Figure 5.1: From the most general model to the sparsest one. Model A — Model B means
that Model A can yield Model B, as Model B is a particular case of Model A. For example, the
MNARz model is included in the MNARz/ model which is itself included in the MNARyz/
model involved by the MNARy*2/ model.

5.3.2 Interpretation of the MNARz and MNAR2’ models

The MNARz model given in (5.12) is the simplest of the MNAR models we propose. Roughly
speaking, this model assumes that the proportion of missing values can vary among the
clusters. However, behind this apparent simplicity, it benefits from interesting properties we
underline below.

Dependency of the MINAR:Z on y; Although MNARZ does not directly involve y; in
its ground definition (5.12), it does not mean that the pattern ¢; does not depend on y; since
z; depends itself on y;. This can be theoretically observed through the expression

K
P(ci | yism,0,9) = > Plei | 2 = Lp)P(zig = 1 | yi;m,0) # Plcis 0,4)).
k=1

This indirect dependency of MNARz on y; is also numerically illustrated on Figure 5.2
by drawing P(c¢; | y;; 7, 60,1) for a a three component univariate Gaussian model with mixing
proportions m; = m = 0.3 and w3 = 0.4, with centers u; = pu3 = —5 and ps = 0, and with
variances o2 = k (k € {1,2,3}). The MNARz parameters are fixed to a; = 2, ag = 0 and
a3 = 1.

Reinterpretation of the MNARz and MNAR2z' models as a MAR strategy
Finally it is important to mention that MNARz and MNARZ’ can be linked to a MAR-like
strategy commonly used in the machine learning community (Josse et al., 2019). It consists
of using a MAR mixture model on the concatenated dataset Y°P = (Y°b* () as a way for
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=1ly)

P(ci
0.00 0.02 0.04 0.06 008 010 0.12
1

Figure 5.2: Numerical illustration of dependency between ¢ and y in a MNARz model.

easily dealing with missing data. For instance, if Y°" and C are defined as

7 26 5 1 00
Yo = | blue 1.9 4 |, ¢=]0 0 0
red 23 7 0 01
then Y°Ps ig expressed as
. ? 26 51 00
Yo = [ blue 1.9 4 0 0 0
red 23 7 0 0 1

The MAR mixture model which is used for this new dataset Y°P assuming a MAR missing
mechanism is equivalent to the mixture model for Y°b% given in (1.16) assuming a MNARz
or MNAR2’ model for C. This property is done more precise in Proposition 21 (see in
particular (5.16)) for the explicit expression of the mixture associated to the dataset Y°Ps,
The proof of this proposition is given in Appendix E.1. For simplicity this proposition is
particularized to maximum likelihood estimate, but it could be easily generalized to a large
family of other relevant estimation strategies.

Proposition 21. Let us consider the dataset (g5, ..., 59 such that §;°> = (y Obb, i) for
i€ {l,...,n}. Assume that all yObS arise i.i.d. from the mixture model
K
F@m,0,0) = > mefi(@; 0k ang) (5.15)
k=1
d
- Z i (i3 O) [ | p(oy) ¥ plog) ' = (5.16)

k=1 j:1
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Then the mazimum likelihood estimate of (0,1) associated to the dataset §:°P with the
previous mixture model f under the MAR assumption is the same as the mazimum likelihood
estimate of (m,0,1) associated to the dataset yP with the mizture model (1.16) under the

)

MNARz assumption (5.12) and MNARZ? assumption (5.13).

5.4 Identifiability results

5.4.1 Continuous and count data

Proving the identifiability of the parameters of a mixture model containing missing values
amounts to prove that the joint distribution of (y;, 2, ¢;) can be uniquely determined from
available information. Therefore, we prove the identifiability of the parameters of the observed
distribution

K
Fe™, e, 0,4) = Z f - T S (Vi3 Ok)P(ci | yis i = 1590)dy;. (5.17)
k=12

This section starts with Proposition 22 which gives sufficient conditions for the identifiability
of the parameters for continuous or count data. We denote by f; the marginal density of
the variable j for the class & and we assume

A1. The parameters (7, #) of the marginal mixture defined by the density Zle 7k fr(Yi; Ok)
are identifiable;

A2. There exists a total ordering < of F; xR, for j € {1,...,d} fixed, where F; is the family
of the data densities {fij,..., fx;} and R is the family of the mechanism densities

{p1,-.-,pr} ={p(;1),...,p(;¥K)}. The total ordering is such that Vk < ¢, Fj, < F

(denoting Fj, = py fr; and Fy = pyfy;) implies limy, 4o % = 0;

A3. The missing-data distribution p is assumed to be strictly monotone.

Assumption A1l. means that the identifiability of the parameters (m,6,1) of the model
(5.17) requires the identifiability of the parameters (7, ) of the marginal mixture of (Y, Z)
(i.e. considering the case without missing values). Some authors have already studied
the identifiability of the mixture models, when no missing values in Y occur, especially
Teicher (1963) for Gaussian mixtures and Yakowitz and Spragins (1968) for Poisson mixtures.
Assumption A2. is the core ingredient to prove the identifiability of the parameters and we
illustrate it by considering concrete examples in the following. Note that under Assumption
A3. the probit and the logistic function may be considered, which are the most widely used
for MNAR specifications.

Proposition 22. Under Assumptions A1., A2. and A3., the parameters (m,0,1) of the
model given by (5.17) considering the MNARy*27 model given in (5.6) (and therefore all
others MNAR models) are identifiable up to label swapping.
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The proof of this proposition is detailed in Appendix E.2 and follows the reasoning used
by Teicher (1963, Theorem 2) which proves the identifiability of univariate finite mixture
using a total ordering of the mixture densities. In the following, we denote by fi; the
marginal density of the variable j for the class k.

On the identifiability of the Gaussian mixture Proposition 22 states the identifiability
of the Gaussian mixture with a probit missing-data distribution (details are given in Example 4
presented in Appendix E.2). Indeed, finite Gaussian mixtures are identifiable and, for any
variable j, there is a total ordering defined by O'I%j > 0'(2k+1)j and pig; > figg1); if J,%j = cr(zkﬂ)j,
where f1,; and a,% ; are respectively the mean and the variance of variable j under component
k.

This result has been already stated, in the case of univariate distributions, by Miao et al.
(2016). In particular, the identifiability conditions in Miao et al. (2016) (conditions 1 and 2)
imply the existence of the total ordering defined in Proposition 22. However, these conditions
excludes the case of Gaussian mixture with a logistic missing-data distribution, which is very
used in practice.

Note that for such a model, a total ordering cannot be defined. Indeed, for variable j, such
an ordering cannot be defined if the two univariate variances are equal (i.e., ‘713]' = O'(Qk +1)j)
and pg; — Brj — t+1); T Br+1); = 0. Note that for the specific case of Gaussian mixture
where all the univariate variances are different between the components, then conditions
of Proposition 22 hold true with a logistic missing-data distribution and and so does its
identifiability. In addition, for sparser MNAR models for which the effect on the variable j
does not depend on the class membership k (i.e. Bx; = B(x+1);), the conditions of Proposition
22 hold true with a logistic missing-data distribution. Moreover, as stated by Corollary 1
(proved in Appendix E.2), the condition on the covariance matrices (including the case of
homoscedastic Gaussian mixture) can be relaxed to obtain the generic identifiability of the
model (i.e., all not-identifiable parameter choices lie within a proper submanifold, and thus
form a set of Lebesgue zero measure; Allman et al. (2009)).

Corollary 1. Assume that Zszl e fr(Yi; 0k) is a multivariate Gaussian mizture, p is the
logistic function and that the missingness scenario is defined by (5.6), (5.8) or (5.11), then,
the parameters (m,0,1) of the model given by (5.17) are generically identifiable up to label
swapping, i.e. all not-identifiable parameter choices lie within a proper submanifold, and thus
form a set of Lebesgue zero measure.

For the other MNAR models given in (5.7), (5.9), (5.10), (5.12) and (5.13), the
parameters (m,0,1) of the model given by (5.17) are identifiable up to label swapping.

Proposition 1 can also be applied for variables with integer value (i.e. count data),
as shown in Examples 5 and 6 in Appendix E.2 for the Poisson mixture with probit or
logistic missing-data distributions. The identifiability for the different missing scenarios are
summarized in Table 5.2.
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Gaussian Poisson
Probit Logistic Probit Logistic

MNARy*27 (5.6)
MNARy*z (5.8) v generic identifiability v generic identifiability
MNARy* (5.11)
MNARyz’ (5.7)
MNARyz (5.9)
MNARy (5.10) v v v v
MNARz (5.12)
MNAR2 (5.13)

Table 5.2: Identifiability for different missing scenarios when the mixture is Gaussian or
Poisson.

5.4.2 Categorical data

The case of categorical variables is not covered by Proposition 22. Consider that the vector
y; is composed of categorical variables, such that the variable y;; can take ¢; values (i.e.

Yij = (yilj, ey yfj )), and follows a mixture of K products of d multinomial distributions with
parameters (01, ..., 0kd)k=1,. K such that f;; € R% . We assume the following:

A4. The feature are independently drawn conditionally to the group membership, i.e.
d
Fi(50) = T fri G5 0k5)1 (5.18)
j=1

A5. The dimension d of the observations is related to the number K of clusters so that

d > 2[logy, K|+ 1.

Assumptions A4. and A5. are classical in the categorical case, even without missing
values (Allman et al., 2009). Proposition 23 states that generic identifiability holds only for
the MNAR~z and the MNARZ’ missing scenarios and that the other missing scenarios lead
to non-identifiable models. Its proof is detailed in Appendix E.2 and uses Corollary 5 of
Allman et al. (2009) which gives the identifiability of finite mixtures of Bernoulli products.

Proposition 23. Under Assumptions A3., A4. and AS5., the parameters of the model
given in (5.17) considering the MNARz or MNARZ' models given in (5.12) and (5.13) are
generically identifiable, up to label swapping.

For the other MNAR models, i.e. when the effect of the missingness may depend on the
values of the variables, given in (5.6), (5.8), (5.7), (5.9), (5.10) and (5.11), the parameters
of the model (5.17) are not identifiable.
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5.4.3 Mixed data

Mixed data are a combination of continuous and categorical data. More precisely, let us
denote y5° the set of continuous variables of cardinal d., and y5* the set of categorical variables
of cardinal des = d—dco. Without loss of generality, we can consider y$° = (y;1, ..., ¥id,,) and
Y5 = (Yi(deo+1)s - - - » Yia)- Thus, y; = (y§°,y5*). By assuming the conditional independence of
the features given the group membership, the idenfiability of mixed data directly follows from
Proposition 22 for the continuous variables and Proposition 23 for the categorical variables.

Corollary 2.

e For the continuous variables, assume A1. and A2., i.e. the parameters (m,0) of the
marginal miztures for (yi,...,Y4.,) are identifiable and there exists a total ordering of
Fj xR forje{l,...,de}. Consider the MNARy*2/ model given in (5.6) (thus all
the others are allowed).

e For the categorical variables, assume A5. i.e. de = 2[logy K|+ 1. Consider the
MNARz or MNARz’ model given in (5.12) or (5.13).

Under Assumption A3. and A4., the parameters of the model in (5.17) are generically
identifiable, up to label swapping.

5.5 Estimation of the proposed MNAR models

As seen in Section 5.2, MNAR models are not ignorable, thus they require a specific inference
procedure for estimating the parameters 7, 6 and . This section gathers the description of
the EM and SEM algorithms for Gaussian, multinomial and mixed data with MNAR models
for maximum likelihood estimation. Details of the algorithms are given in Appendix E.3.

Following the expression of the observed likelihood given in (5.2), the observed log-
likelihood is

i=1

n K
U(m,0,4;Y°%,C) = )" log (Z J e fr(ys O)P(ci | i, 2k = 1;¢)dyi>, (5.19)
k=1JYi""

The complete log-likelihood is then

n K
Coomnp (7, 0,05 Y, Z,C) = > > log (i S (yis O)P(ci | yi, zir = 154)). (5.20)
i=1k=1

If the complete log-likelihood was known, simply maximizing it would be sufficient to estimate
the parameters (m,6,1). However, this quantity is unknown (since the class memberships
are unknown) and maximizing it requires the use of EM or SEM algorithms, of particular
interest for finding the maximum likelihood parameters in presence of latent or missing
values. In the following, the iterates index of any algorithm will be 7.
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5.5.1 The EM algorithm

We first detail the EM algorithm for the different MNAR models at hand with Gaussian,
multinomial and mixed mixture models. In its general form, the EM algorithm (Dempster
et al., 1977) consists of iterating the following two steps, starting from an initial parameter
value (79, 0%, %) and until a stopping criterion is met (e.g. a given maximum iteration value
T < Thax):

e E-step: Computation of Q(m,0,¢;n",0",4") which is the expected complete log-
likelihood 4., knowing the observed data and a current value of the parameters. This
quantity can be decomposed into two parts (see Appendix E.3 for the full computation)

as follows
Qm, 0,4y 7", 07 ") = Ellomp(m, 0,05y, 2, 0) |5, i3 7", 07, 9" ]
= Qy(m, 0;7",0") + Qc(Y; ") (5.21)
with
n K n K
Qy(m, 0;77,607) = > > (7i)" log () + (Tat)" E, (0). (5.22)
i=1k=1 i=1k=1
n K
Qe y") = > X (7at) EL(). (5.23)
1=1k=1
where fori=1,...,nand k=1,..., K,
E,(6) = E|log(fulyii04)) | 47, 2k = L,cis0, 07| (5.24)
B(¥) = E|log(Ple; | yozie = 130)) |58, 2 = 1,507, 0| (5.25)
(Tie)" = Plair =1y, ;0" 4", 7") o 7 fr(ye™ 00)P(c; | Y9, zip = 1; (5.26)

e M-step: Maximization over m, 6 and ¥ of Q(m,@,¢;7",0",¢"), by respectively
maximizing Qy(m,0;7",6") w.r.t. (m,6) and Q.(;9¢") w.r.t. . This step leads to
the parameters 771, §"+1 and ¢+,

Let us note that in any case, the maximization of Qy(m,0;7",0") over 7 is easy, once
the (7ix)"’s are given. However, the computation of Ej (0), Ej.(¢)) and (7;)", then the
maximization of Qy(m,8;7",0") over 6 and Q.(v;¢") over 1, both depend additionally
on the MNAR model at hand and thus need to be specifically detailed hereafter. It is
straightforward with the MNARz and MNARz/ models given in (5.12) and (5.13) but more
difficult with all the other MNAR models, called in the sequel MNARy* (modelling the
effect of the missingness depending on 7). Recall that MNARz and MNAR2’ are the only
ones which guarantee identifiability of the parameters for categorical data (see Section 5.4).
For the MNARy* models, only algorithms for continuous data have to be described. For
the sake of brevity, the estimation procedure in the continuous case is restricted to the case
where the variables are Gaussian.
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5.5.1.1 MNAR~z and MNAR2/ models
Consider the MNAR2’ model which includes the MNARz one, i.e. P(eij | yir zie = 1;9) =

obs

p(ay;). Computing (5.24) requires to integrate over the distribution P(y™* | yos, z;, =
1,¢;;0",4"). For the MNARZ/ model, by dependence of y, one has

Py |y, zip = 1,65 07,97) = P(y™ | 49, 25 = 1,07, 97).

For Gaussian mixture, with the following notations

ypbs
(i | 2z = 1;0") = <( s > | zik = 1;9r>

~N ( (ug®)" > (E?l?s,ozs)r (E?Es,m%s*.)r
(M;Ilils)r (E;I;Cls,o S)r (Eglfls,mls)r

(0 2%, 2 = 1567) ~ N () (S (5.27)

It makes the expectation in (5.24) classical. In addition, by independence of y, (5.25) and
(5.26) have closed forms. It leads to a straightforward maximization step. The EM algorithm
for the MNARz’ model is described in Algorithm 3 for Gaussian mixture. All the details
are given in E.3.1.1 and E.3.1.2 for both Gaussian and categorical data. The initialization
and the stopping criterion are discussed in Section 5.6.

one obtains

5.5.1.2 MNARy* models

The MNARy* models consider the effect of the missingness depending on y and lead then
to unfeasible computations. The distribution ]P’(yzmis | y;?bs, zik = 1,¢;;07,9") is explicit (a
truncated Gaussian as shown in Appendix E.3.2.1) if the missing-data distribution p is
probit but it is not classical if p is logistic. However, to our knowledge, for both forms of
missing-data distributions, Equations (5.25) and (5.26) have no closed forms. In addition,
the maximization over ¢ of (5.25) is a delicate issue because the function involved is not
concave.

5.5.2 The SEM algorithm

While the computation for the MNARz and MNARz’ models are feasible, it is not the
case for the models MNARy* with Gaussian mixtures. The SEM algorithm (Celeux and
Diebolt, 1985) could avoid this difficulty, by imputing missing values using a Gibbs sampling
instead of integrating over them. In addition, it has another possible advantage over the EM
algorithm since it is not trapped by the first local maximum encountered of the likelihood
function (Celeux and Diebolt, 1985).

The SEM algorithm consists of the following two steps for r,,., iterations:
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Algorithm 3 EM algorithm for Gaussian mixture and MNARz/ model

Input: YN e R"4 K > 1, ryax.
Initialize 7'['2,, ,ug, 22 and 1/12.
for r = 0 to ry.x do
E-step:
fori=1ton,k=1to K do
: -1

~mi i mis,ob: bs,ob:

() = (o) + (S (S50 ) (9™ = (ko).
o . -1 .

S mi is,mi mis,ob bs,ob bs,mi
(Egys)r — (EE’II::SIHS)T _ (ZZkSO S)r <(2§)k50 S)r) (Efks S)r.
(Gik)" = (W, (=)").

bs,ob bs,mi

irk _ 0;) .S ObS OZ S,1M1S
mis,obs i

1 0 (E?éls)r

1
bs,ob. . .
(ok)"ocmp (Y% (gP*)", (S5 ") T 1=y Pl (1 — plag;)) L=

end for

M-step:

for k=1 to K do . o
m = L () ! = 2l

sl _ P [(Tik)r((Qi,k)T—N;H)((ﬂi,k)r—MZJrl)T'*‘ifk)]
k i1 (Tik)"
Let 9”1 be the resulted coefficients of a GLM with a binomial link function.
end for

end for
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e SE-step: Draw the missing data (y™)"+! and ZT-H according to their current
conditional distribution P(y™$, z; | yob, ¢;5 7 ,QT,W’). Since it is not convenient to
simulate this conditional dlstrlbutlon, we simulate instead the following two easier
conditional probabilities:

U~ P( gl 0 ) and ()~ B |y, 2 e 60, T), (5.28)

where y!' = (y9%, (y)"). For the latter distribution, we can draw the membership
k of zI™ from the multinomial distribution with probabilities (P(zy = 1 |
yi, im0 ") )1, K-

Note that

( mis ‘ yobs’ Zr]:—l -1 Ci;er’d)r)
[T, Plos = 119,56 27 = 5w P | 45, 257 = 136)
ype Lot B(ety = 1| g™ 2 = Lgm)B(y™ | 2™, 2T = L 67y
(5.29)

so the conditional distribution of ((y™s)" ! | yobs, 20t L1, ¢i) may not be classical

in general, this distribution will be yet made explicit in particular cases (see Section
5.5.2.1).

e M-step: Maximization of the completed log-likelihood £ oy (0, ¥, 759", 2", ¢) over 7, 0
and v, which provides "1, "1 and 7" +1.

5.5.2.1 MNARy* models

For the MNARy* models, the conditional distribution ((ymls)”+1 |y, 2 =1 cz) given in
(5.29) is not explicit if the missing-data distribution p is logistic, because the product of
logistic and Gaussian distributions is not a standard law. Therefore, the SEM algorithm
cannot be applied.

However, if p is the probit function, we can make the distribution of interest explicit.
More particularly, we introduce an instrumental variable L; such that L; = o + Bry; + €,
with €; ~ N (04, Igxq). By abuse of notation, 5}y; denotes the Hadamard product between
B;, and y;. Then, ¢; can be viewed as an indicator for whether this latent variable is positive,

ie. forall j=1,...,d,
1 if Lij >0
“ij = { 0 otherwise. (5.30)

In the SE-step, instead of drawing 2/ ™!, (y™)" 1 as in (5.28), we draw LI 2/ +1 (ymis)r+1
as follows

° L;H is drawn according to P(.|y}, 2], = 1,¢;;4") which is the multivariate truncated
Gaussian distribution

Ni(ag, + Bryis Laxa; a, b), (5.31)
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where a and b are lower and upper bounds depending on the indicator ¢; (detailed in
Appendix E.3.2.1).

e The probability parameters of the multinomial distribution used for drawing the
membership k € {1,..., K} of ZZH are

]P)(Zik =1 | L?{-‘rl’ yzra Ci; 7_[.7“7 07‘, T/’T)
d . 1—c;j
o [T @lag; + B () (1 - @(af, + Bwi™)
j=1

(LI af, + Bryl, Laas a,b)d(yy s i, Si), (5.32)

where @ is the cdf of the standard Gaussian distribution, ¢(.; uy, 37,) is the multivariate
Gaussian density with mean jj, and covariance matrix ), and ¢¢(.; af, + B.vi, Lixd, a, )
is the multivariate truncated Gaussian density with mean aj + 3;.y;, identity covariance
matrix and a and b as lower and upper bounds.

o (y™®)" is drawn according to P(.|LI 1 21 4o ¢;: 07 4") which is the multivariate

Gaussian distribution
N (™, 250N (5.33)

where MZSEM and EZSEM depend on the parameters §” and ¢" (see Appendix E.3.2.1 for
more details).

Eventually, when p is the probit function, the SEM algorithm can be derived, see Algorithm
4. The initialization and the stopping criterion are discussed in Section 5.6.

5.5.2.2 MNAR:z and MNAR2’ models

For MNAR~z and MNARz’ models, the conditional distribution involved in the SE-step has
already been given in (5.27). All the computations are feasible and derived in E.3.2.1 and
E.3.2.2 for both Gaussian and categorical data.

5.6 Numerical experiments on synthetic data

In this section, we compare the EM algorithm (for the MNARz (5.12) model) and the SEM
algorithm (for the MNARz (5.12), MNARy (5.10), MNARyz (5.9) models) on synthetic
data with the SEM algorithm considering MCAR data (5.14) and several two-step heuristics
detailed below. These algorithms are detailed for Gaussian variables in Algorithms 3 and 4.
The two-step heuristics consist of first imputing the missing values to get a complete dataset
and then applying classical model-based clustering which has been implemented for the case
without missing values. Regarding the imputation methods in the two-step strategies, we
consider the following ones:

114



Chapter 5. Clustering with MNAR data 5.6. Numerical experiments on synthetic data

Algorithm 4 SEM algorithm for Gaussian mixture, MNARy* models, p is probit

Input: YN e R4 K > 1, rpax.
Initialize Z9, 772, ug, Eg and wg
for r = 0 to rpax do
SE-step:
for i=1tondo
Draw (L;)"*! from the multivariate truncated Gaussian distribution given in (5.31).

Draw 2/ ! from the multinomial distribution with probabilities detailed in (5.32).
Draw (yzmls)“r1 from the multivariate Gaussian distribution given in (5.33).

end for

Let Y"1 = (y™|...|y.!) be the imputed matrix.

Let Z™+1 = (2771 ... |22*1) be the partition.

M-step:

for k =1 to K do
Let 7Tk+1 be the proportion of rows of Y"*! belonging class k.
Let ,u,;rl ETH be the mean and covariance matrix of rows of Y"+! belonging to class
k.
Let 4" ! be the resulted coefficients of a GLM with a binomial link function.
end for
end for

(a) multiple imputations by chained equations (Buuren and Groothuis-Oudshoorn, 2010):
it consists of generating M plausible values for each missing value by computing
expectation of the missing variables given the observed ones (Mice),

(b) single imputation by chained equations (Buuren and Groothuis-Oudshoorn, 2010), i.e
the same method as in (a) with M =1 (Ice).

For the first method, M imputed datasets are computed, the model-based clustering is then
performed on each complete dataset, for which the performance is measured. The final
performance of this method is computed with the mean.

Measuring the performance It is possible to choose one of the proposed methods by
using an information criterion such as the Bayesian Information Criterion (BIC) (Schwarz,
1978) or the Integrated Complete-data Likelihood (ICL) (Biernacki et al., 2000). As the
ICL involves an integral which is generally not explicit, we can use an approximate version
(Baudry et al., 2015) which we detail when there is missing data. For a model Mg with df
parameters, one has

n K
ICL(df) BIC df Z Z AMAP MLE’ GMLE7 T,Z)MLE) log(nk (ﬂ_MLE7 QMLE’ ¢MLE))’

df
BIC(df) = (L5, 9¥HE, g MEE yob, €) — =~ log(n)
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with 7MLE GMLE ) MLE qenoting the maximum likelihood estimators computed for the model
Mgt and where £(m, 0, 1); Y°P C) is the observed log-likelihood given in (5.19) and

T f1 (Y253 0P (s | Y9, zir, = 1;0,9)
S TR (e 00)P e | Y8, zi, = 156, 0)

2%AP (7T7 07 w) = argma’X Tik (71—7 97 w) (534)
ke{1,...,K}

Tik(ﬂ—791¢) = P(sz = 1\ybeaCi§7797¢) =

The BIC criterion is expected to select a relevant mixture model in a density estimation
perspective, while ICL is expected to select a relevant mixture model for a clustering purpose.
Indeed, this latter includes an entropy term which involves the estimator of the partition,
given by ZMAP = (MAPY, e Rn*K In addition, the Adjusted Rand Index (ARI) (Hubert
and Arabie, 1985) can be computed between the true partition given by Z and the estimator
of the partition. Obviously other strategies are possible to select a sensible and useful mixture
model (see Celeux et al. (2019)).

Initialization and stopping criteria for the (S)EM algorithms

Initialization For the SEM algorithm considering MCAR data, the partition matrix
7Y is computed with an arbitrary stochastic matrix, with each row summing to 1. For
Gaussian data, the parameters 7o, 42, X9 for each class k € {1,..., K} are initialized with
the proportion, the mean and the covariance matrix of observed rows belonging to class
k respectively. The mechanism parameters ¢° is initialized with arbitrary values. The
initialization of the parameters is performed on a sub-sample of the data (by default, 30% of
the observations). This random initialization is performed several times, and we keep the
result which maximizes the ICL criterion. We initialize the algorithms for MNAR models
with the result of the SEM algorithm considering MCAR data.

Stopping criteria The EM algorithm stops when a certain number of iteration ryax
have been performed and the difference between the log-likelihood of the two last iterates is
inferior to a certain threshold. The SEM algorithm stops when a certain number of iteration
Tmax has been performed. Note that for the SEM algorithm the set of parameters returned
is the one which maximizes the observed log-likelihood.

Leveraging from MINAR data in clustering In addition to dealing with informative
missing data, the expected interest of MNAR modeling in the clustering context is to improve
the partition estimation. To illustrate this, let us consider a bivariate two-component Gaussian
mixture with equal mixing proportions and identity covariance matrices, i.e. the observations
Y € R? follows the distribution Y ~ 0.5 (1, I2x2) +0.5N (2, I2x2). The difference between
the centers of both mixture components is taken as A, = pg — p11 € {0.5,1,..., 3}, where
for any cluster k£ € {1,2}, the center ux = (ug1,ur2) is chosen with equal components
(tk2 = pg1). This cluster overlap controls the mixture separation, which can vary from a
low separation (A, = 0.5) to a high one (A, = 3). We consider the MNARz model given in
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Figure 5.3: Relative effect of both the mixture component separation strength A, and the
MNAR evidence Apere on theoretical ARI. For example, if Apee = 10%, it means that the
second class has 10% more missing values than the first class.

(5.12) with p the cumulative distribution function of the standard Gaussian. One can play
on the discrepancy between inter-cluster missing proportions Apere = |percy — perc,|, by
making it vary in {0,0.1,0.2,0.3}. The value A,erc means that if the percentage of missing
values in the first cluster is perc;, the percentage of missing values in the second cluster
is percy = (perc; + Aperc). To have p;% missing values in the first class, the parameter
chosen is a; = ¢~ 1(p1%), with ¢! the inverse of the cumulative distribution function of the
standard Gaussian. Therefore, increasing values of Aper. corresponds to increase the MNAR
evidence: indeed, Apere = 0 corresponds to a MCAR model whereas a high value of Apere
corresponds to a high difference of missing pattern proportions between clusters. Finally,
15% of missing values is introduced whatever the MNAR evidence Apec and the mixture
separation are A,. Figure 5.3 gives the theoretical ARI (i.e. we compute the ARI with the
theoretical parameters) as a function of the cluster overlap A, and the MNAR evidence
Aperc- Even though the good classification rate is mostly influenced by the center separation
Ay, it also increases with the MNAR evidence Apere. This toy example illustrates how
clustering can leverage from MNAR missing values, generally considered as a true hindrance
for any statistical analysis.

Toy example: MINARZz in the Gaussian case We first consider a simple case with
two classes and when the data are bivariate Gaussian (n = 2000, d = 2)

Y ~ mN(p1, 21) + moN (u2, X2),
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with Hm1 = (0,0), A“ = u2 — U1, T = 0.3,71’2 = (0.7 and 21 = IQXQ, 22 = IQXQ. We make the
cluster overlap vary as follows: A, = (2,2) for a low separation between the two clusters
and A, = (4,4) for a high separation between the two clusters (see Figure 5.4 for the
visualization). We introduce missing values with a MNARz model (see (5.12)). In particular,

Vjie{1,2}, Pcij = 1]zi1 = 1,y:) = ®(1), P(cij = 1]zi2 = 1,9:) = P(2)

with o = (a1, a2) = (—2,—0.2) and ® the cumulative distribution function of the standard
Gaussian distribution. It leads to 25% of missing values in the whole dataset: 3% of missing
values in the first class and 35% in the second class. Thus, the mechanism provides some
information on the clustering. In Figure 5.5, it has been illustrated numerically. Indeed, we
compute the ARI with the true parameters (m, 6,1): (i) by considering the triplet (Y, Z, C) i.e.
by computing the estimator of the partition as in (5.34) or (ii) by ignoring the missing-data
pattern C' and only considering (Y, Z), i.e. computing the estimator of the partition with

5%AP(7B9) = argmax {7 (m,0) = Pz, = 1|?/be;77, 0)}.
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Figure 5.4: Scatterplot of the data points for a low separation between the classes when
A, = (2,2) (left graphic) and a high separation between the classes when A, = (4,4) (right
graphic).

Cluster separation influence In Figure 5.5, the algorithms are compared in terms
of ARI in the case where the classes are well separated (A, = (4,4)) or not (A, = (2,2)).
As expected, all the methods give better performances when the classes are well separated.
In both cases, the two steps-heuristics seem not appropriate for the classification task. Note
also that they rely on no theoretical guarantees at all. In the case of clear separation between
the clusters (A, = (4,4)), the MNAR models give similar performances and all outperform
the MCAR model. Note that the relatively low improvement was expected because the
theoretical ARI, taking into account the mechanism, does not increase so much compared
to the theoretical ARI without account for it. In addition, note that the MCAR model
that we consider is specific since it needs to model ¢ in order to be able compare it with
alternative MNAR models. It is not a general view of a MCAR situation, that would not
include any modeling of c. In the case where the classes are not well separated (A, = (2,2)),
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the MCAR model clearly gives poorer performances than the MNAR models. Note that
the MNARz and MNARyz models, which model the effect of missingness depending on the
class membership, have performances close to the ARI obtained with the true parameters
(by considering the triplet (Y, Z,C)). The MNARy model has poorer performances but it
still outperforms the MCAR model and the two-step heuristics. This can be explained by
the fact that it only takes into account the effect of the absence of data as a function of the
variables.

038 $ = — N

B (22)
_ S U U U U ————————————— B (44)
x
<
0.6- TheoARI
— WithC
=== Without C
0.4- ﬁ

MNARz EM_MNARz  MNARy MNARyz MCAR Ice Mice

Figure 5.5: Comparison of the different algorithms in terms of ARI for bivariate Gaussian
data (n = 2000, d = 2) and two classes when the true missing-data mechanism is MNARz.
The red boxplot corresponds to A, = (2,2) when the classes are not well separated. The blue
boxplot corresponds to A, = (4,4) when the classes are well separated. The stochasticity
comes from the process of drawing 10 times the triplet (Y, Z,C). The plain and dashed
lines correspond to the mean of the ARI computed with the true parameters by considering
(Y, Z,C) or (Y, Z) respectively.

Automatic choice of the number of cluster In our algorithms, the number of
clusters is considered known, but it can be automatically chosen by using the ICL criterion.
The algorithms are performed with several values of the number of clusters K = 1,2, 3, 4.
The clusters number for the model with the highest ICL is then chosen. To our knowledge, no
method propose an automatic choice of the number of clusters in unsupervised classification
for the two-step heuristics, which is also a major drawback. Therefore, only the MNAR. and
the MCAR models are compared. In Figure 5.6, in the case where the classes are not well
separated, only the MNARZz models selects the true number of clusters K = 2. The other
models select K = 1. In Figure 5.7, when the classes are well separated, all the models select
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the good number of clusters K = 2.
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Figure 5.6: Comparison of the different algorithms in terms of ICL for bivariate Gaussian
data (n = 2000, d = 2) and two classes when the true missing-data mechanism is MNARz
and A, = (2,2). The algorithms have been performed for K = 1,2,3,4. The dots are the
means for the process of drawing 10 times the triplet (Y, Z, C).
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Figure 5.7: Comparison of the different algorithms in terms of ICL for bivariate Gaussian
data (n = 2000, d = 2) and two classes when the true missing-data mechanism is MNARz
and A, = (4,4). The algorithms have been performed for K = 1,2,3,4. The dots are the
means for the process of drawing 10 times the triplet (Y, Z, C).
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Chapter 6

R-misstastic

This chapter is an ongoing work, led by
Imke Mayer and carried out in
collaboration with Julie Josse, Nicholas
Tierney and Nathalie Vialaneiz. I have
contributed to the whole platform but
mostly worked on the workflows.

Abstract

Missing values are unavoidable when working with data. Their occurrence is exacerbated as
more data from different sources become available. However, most statistical models and
visualization methods require complete data, and improper handling of missing data results
in information loss, or biased analyses. Since the seminal work of Rubin (1976), there has
been a burgeoning literature on missing values with heterogeneous aims and motivations.
This has resulted in the development of various methods, formalizations, and tools (including
a large number of R packages and Python modules). However, for practitioners, it remains
challenging to decide which method is most suited for their problem, partially because
handling missing data is still not a topic systematically covered in statistics or data science
curricula.

To help address this challenge, we have launched a unified platform: “R-miss-tastic”,
which aims to provide an overview of standard missing values problems, methods, how to
handle them in analyses, and relevant implementations of methodologies. Several pipelines
in R and Python allow for an hands-on illustration of how to handle missing values in
various statistical tasks such as estimation and prediction, while ensuring reproducibility
of the analyses. The objective of this work is not only to collect, but also comprehensively
organize materials, to create standard analysis workflows, and to unify the community. These
overviews are suited for beginners, students, more advanced analysts and researchers.
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6.1 Context and motivation

Missing data are unavoidable as soon as collecting or acquiring data is involved. They occur
for many reasons including: individuals choose not to answer survey questions, measurement
devices fail, or data have simply not been recorded. Their presence becomes even more
important as data are now obtained at increasing velocity and volume, and from heterogeneous
sources not originally designed to be analyzed together. As pointed out by Zhu et al. (2019),
“one of the ironies of working with Big Data is that missing data play an ever more significant
role, and often present serious difficulties for analysis”. Despite this, the approach most
commonly implemented by default in software is to toss out cases with missing values. At
best, this is inefficient because it wastes information from the partially observed cases. At
worst, it results in biased estimates, particularly when the distributions of the missing values
are systematically different from those of the observed values (e.g., Enders, 2010, Chap. 2).

However, handling missing data in a more efficient and relevant way (than limiting the
analysis on solely the complete cases) has attracted a lot of attention in the literature in the
last two decades. In particular, a number of reference books have been published (Schafer
and Graham, 2002; Little and Rubin, 2019; Van Buuren, 2018; Carpenter and Kenward,
2012) and the topic is an active field of research (Josse and Reiter, 2018). The diversity
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of the problems of missing data means there is great variety in the methods proposed
and studied. They include model-based approaches, integrating likelihoods or posterior
distributions over missing values, filling in missing values in a realistic way with single, or
multiple imputations, or weighting approaches, appealing to ideas from the design-based
literature in survey sampling. The multiplicity of the available solutions makes sense because
there is no single solution or tool to manage missing data: the appropriate methodology
to handle them depends on many features, such as the objective of the analysis, type of
data, the type of missing data and their pattern. Some of these methods are available in
various and heterogeneous software solutions. As R (R Core Team, 2020) is one of the main
softwares for statisticians and data scientists and as its development has started almost
three decades ago (Ihaka, 1998), R is one of the language that offers the largest number
of implemented approaches. This is also due to its ease to incorporate new methods and
its modular packaging system. Currently, there are over 270 R packages on CRAN that
mention missing data or imputation in their DESCRIPTION files. These packages serve
many different applications, data types or types of analysis. More precisely, exploratory
and visualization tools for missing data are available in packages like naniar, VIM, and
MissingDataGUI (Tierney et al.; Tierney and Cook, 2018; Kowarik and Templ, 2016; Cheng
et al., 2015). Imputation methods are included in packages like mice, Amelia, and mi
(Buuren and Groothuis-Oudshoorn, 2010; Honaker et al., 2011; Gelman and Hill, 2011).
Other packages focus on dealing with complex, heterogeneous (categorical, quantitative,
ordinal variables) data or with large dimension multi-level data, such as missMDA, and
MixedDatalmpute (Josse et al., 2016a; Murray and Reiter, 2016). To our knowledge, R is
the programming language offering the largest variety of implemented methods. However,
other languages such as Python (Van Rossum and Drake, 2009), which currently only have
few publicly available implementations of methods that handle missing values in statistical
tasks, offer more and more solutions. Two prominent examples are: 1) the scikit-learn library
(Pedregosa et al., 2011) which has recently added a module for missing values imputation;
and 2) the DataWig library (Biessmann et al., 2018) which provides a framework to learn to
impute incomplete data tables.

The rich variety of methods and tools for working with missing data means there are
many solutions for a variety of applications. Despite the number of options, missing data
are often not handled appropriately by practitioners. This may be for a few reasons. First,
the plethora of options can be a double-edged sword - the sheer number of options making it
challenging to navigate and find the best one. Second, the topic of missing data is often itself
missing from many statistics and data science syllabuses, despite its relative omnipresence
in data. So then, faced with missing data, practitioners are left powerless: quite possibly
never having been taught about missing data, they do not have an idea of how to approach
the problem, what are the dangers of mismanagement, navigate the methods, software, or
choose the appropriate method or workflow for their problem.

To help promote better management and understanding of missing data, we have
released R-miss-tastic, an open platform for missing values. The platform takes the form
of a reference website https://rmisstastic.netlify.com/, which collects, organizes and
produces material on missing data. It has been conceived by an infrastructure steering
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committee (ISC; its members are authors of this article) working group, which first provided
a CRAN Task View! on missing data ? that lists and organizes existing R packages on
the topic. The “R-miss-tastic” platform extends and builds on the CRAN Task View by
collecting and organizing articles, tutorials, documentation, and workflows for analyses with
missing data. The platform provides new tutorials, examples and pipelines of analyses we
have developed with missing data that span the entirety of an analysis. The latter have been
developed by us for this platform, implementing standard methods for generating missing
values and analyzing them under different perspectives. Starting from data preparation,
these pipelines also cover exploratory data analyses, establishing statistical models, analysis
diagnostics, applying machine learning methods, through to communication of the results
obtained from incomplete data. This platform also references publicly available datasets
that are commonly used as benchmark for new missing values methodologies. It is easily
extendable and well documented, so it can seamlessly incorporate future research in missing
values. The intent of the platform is to foster a welcoming community, within and beyond
the R community . “R-miss-tastic” has been designed to be accessible for a wide audience
with different levels of prior knowledge, needs, and questions. This includes, for instance,
students looking for course material to complement their studies, teachers and professors
who can use a reference website for their own classes or refer to students, statisticians or
researchers in a different fields using statistics searching for solutions or existing work to
help with analysis, researchers wishing to understand or contribute information for specific
research questions, or find collaborators.

The remainder of the article is organized as follows: Section 6.2 describes the different
components of the platform, the structure that has been chosen, and the targeted
audience. The section is organized as the platform itself, starting by describing materials
for less advanced users then materials for researchers and finally resources for practical
implementation. Section 6.3 details the implementation and use-cases of the provided
workflows. Finally, in Section 6.4 we conclude with an overview of the planed future
development for the platform.

6.2 Structure and content of the platform

The R-miss-tastic platform is released at https://rmisstastic.netlify.com/. It has been
developed using the R package blogdown Xie et al. (2017) which wraps hugo®. Live examples
have been included using the tool https://rdrr.io/snippets/ provided by the website
“R Package Documentation”. The source code and materials of the platform have been
made publicly available on GitHub*, which provides a transparent record of the platform’s
development, and facilitates community contributions.

We now discuss the structure of the R-miss-tastic platform, the aim and content of each
subsection, and highlight key features of the platform.

https://CRAN.R-project.org/package=ctv
2https://cran.r-project.org/web/views/MissingData.html
Shttps://gohugo.io/

4reposi‘cory R-miss-tastic/website
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6.2.1 Workflows

An important contribution and novelty of this work is the proposal of several workflows that
allow for a hands-on illustration of classical analyses with missing values, both on simulated
data and on publicly available real-world data. These workflows are provided both in R and
in Python code and cover the following topics:

e How to generate missing values? Generate missing values under different mechanisms,
on complete or incomplete datasets. This is useful when performing simulations to
compare methods.

e How to do statistical inference with missing values? We focus in particular in the
different solutions (maximum likelihood or multiple imputation) that are available to
estimate linear and logistic regression parameters with missing values in the covariates.

e How to impute missing values? We compare different single imputation/matrix
completion methods (for instance using conditional models, low-rank models, etc.)

e How to predict with missing values? We consider establishing predictive models (for
instance using random forests (Breiman, 2001)) on data with incomplete predictors.
The workflows present different strategies to deal with the missing values in the
covariates both in the train set and in the test set.

The aim of these workflows is threefold: 1) they provide a practical implementation of
concepts and methods discussed in the lectures and bibliography sections (see Sections 6.2.2
and 6.2.3); 2) they are coded in a generic way, allowing for simple re-use on other datasets, for
integration of other estimation or imputation methods; 3) the distinction between inference,
imputation, and prediction lets the user keep in mind that the solutions are not the same in
these cases.

Furthermore, they allow for a transparent and open discussion about the proposed
implementations which can be followed on the project GitHub repository®.

We provide a more detailed view on the proposed workflows in Section 6.3, giving code
examples and their corresponding tabular or graphical outputs.

6.2.2 Lectures

Before starting to use any of the existing implementations for handling missing values in a
statistical analysis, it is essential to understand why missing values are problematic. There
are many lenses to view missing data through: the source of the missing values, their potential
meaning, the relevance of the features they occur in — and the implications for different types
of analyses. For someone unfamiliar with missing data, it is a challenge to know where to
begin the journey of understanding them, and the methods to address them. This challenge
is being addressed with “R-miss-tastic”, which makes the material to get started easily
accessible.

Shttps://github.com/R-miss-tastic/website
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Teaching and workshop material takes many forms — from slides, course notes, lab
workshops, video tutorials and in-depth seminars. The material is of high quality, and
has been generously contributed by numerous renowned researchers who investigate the
problems of missing values, many of whom are professors having designed introductory and
advanced classes for statistical analysis with missing data. This makes the material on the
“R-miss-tastic” platform well suited for both beginners and more experienced users.

These teaching and workshop materials are described as “lectures”, and are organized
into five sections:

1. General lectures: introduction to statistical analyses with missing values, theory
and concepts are covered, such as missing values mechanism, likelihood methods,
imputation.

2. Multiple imputation: introduction to popular methods of multiple imputation (joint
modeling and fully conditional), how to correctly perform multiple imputation and
limits of imputation methods.

3. Principal component methods: introduction to methods exploiting low-rank type
structures in the data for visualization, imputation and estimation

4. Specific data or applications types: lectures covering in detail various sub-problems
such as missing values in time series, in surveys, or in treatment effect estimation.
Indeed, certain data types require adaptations of standard missing values methods (for
instance handling the time dependence in time series (Moritz and Bartz-Beielstein,
2017)) or additional assumptions about the impact of missing values (such as the
impact on confounded treatment effects in the causal inference context (Mayer et al.,
2020)). But also more in-depth material, for instance video recordings from a virtual
workshop on Missing Data Challenges in Computation, Statistics and Applications®
held in 2020.

5. Implementations: a non-exhaustive list of detailed vignettes describing functionalities
of R packages and of Python modules that implement some of the statistical analysis
methods covered in the other lectures. For instance the functionalities and possible
applications of the missMDA R package are presented in a succinct summary, allowing
the reader to compare the main differences between this package and the mice package
which is also summarized using the same summary format.

Figure 6.1 is a screenshot of two views of the lectures page: Figure 6.1A shows a collapsed
view presenting the different topics, Figure 6.1B shows an example of the expanded view
of one topic (General tutorials), with a detailed description of one of the lecture (obtained
by clicking on its title), “Analysis of missing values” by Jae-Kwang Kim. Each lecture can
contain several documents (as is the case for this one) and is briefly described by a header
presenting its purpose.

Lectures that we found very complete and thus recommend are:

Shttps://www.ias.edu/math/mdccsa
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R-miss-tastic Generalttorals .

A resource website on missing values - Methods and references for managing missing data Statistical Methods for
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Figure 6.1: Lectures overview.

e Statistical Methods for Analysis with Missing Data by Mauricio Sadinle (in “General
tutorials”)

e Missing Values in Clinical Research — Multiple Imputation by Nicole Erler (in “Multiple
imputation”)

e Handling missing values in PCA and MCA by Francois Husson. (in “Missing values
and principal component methods”)

6.2.3 Bibliography

Complementary to the lectures section, this part of the platform serves as a broad overview on
the scientific literature discussing missing values taxonomies and mechanisms and statistical,
machine learning methods to handle them. This overview covers both classical references
with books, articles, etc. such as Schafer and Graham (2002); Little and Rubin (2019);
Van Buuren (2018); Carpenter and Kenward (2012) and more recent developments such
as Josse et al. (2019); Gondara and Wang (2018) who study the consistency of supervised
learnning with missing values. The entire (non-exhaustive) bibliography can be browsed in
two ways: 1) a complete list, filtering by publication type and year, with a search option for
the authors or 2), as a contextualized version. For 2), we classified the references into several
domains of research or application, briefly discussing important aspects of each domain. This
double representation is shown in Figure 6.2 and allows an extensive search in the existing
literature, while providing some guidance for those focused on a specific topic. All references
are also collected in a unique BibTex file made available on the GitHub repository’. This

Tin resources/rmisstastic_biblio.bib
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R-miss-tastic R-miss-tastic
A resource website on missing values - Methods and references for managing missing data A resource website on missing values - Methods and references for managing missing data

On this platform we attempt to give you an overview of main references on missing
values. We do not claim to gather all available references on the subject but rather to -

offer a peak into different fields of active research on handling missing values, allowing

for an introductory reading as well as a starting point for further bibliographical research. Publication type Year Author
Al s v | Sear hor na
See here for a full (and uncommented) list of references. -
Inspired by CRAN Task View on Missing Data and a review of Imbert & Villa-Vialaneix on Publicatior
handling missing values (2018, written in French) we organized our selection of relevant Citation Yoar type
references on missing values by different topics.
Collapse All Abayomi, K., A. Gelman, and M. Levy. Dia multivaria ations. In: Journal of the Royal Statistical 2008  Article
- :Socrety, Series C (Applied Statistics) 57.3 (2008), pp. 273-291.
Short introduction to missing values + 00|
General references and reviews + Albert, P. S. and D. A. Follmann. Mod to in pout. In: Biometrics 2000  Article
56.3 (2000), pp. 667-677.
Weighting methods + —
ata. Quantitative Applications in the Social Sciences. Thousand Oaks, CA, USA: Sage 2001 Book
Hot-deck and kNN approaches + N: 9780761916727.
Likelihood-based approaches +
Andridge, R. and R. J. A. Little. A review of hot deck imputation for survey non-response. In: International 2010 Article
. Statistical Review 78.1 (2010), pp. 40-64.
Single imputation +
Multiple imputation + Audigier, V., F. Husson, and J. Josse. A principal comy impute missing values for mixed data. 2016 Article
In: Advances in Data Analysis and Classification 10.1 (2016), pp. 5-26.
Machine Learning + 0
T + Audi V., F. Husson, and J. Josse. 2016  Article
Missing values mechanisms o alysis. In: Statistic
Collapse All
(a) Contextualized version (b) Unordered version

Figure 6.2: Bibliography overview.

centralized file allows external users to easily propose additions to the bibliography which
are then reviewed by the platform maintenance team, composed of researchers with different
focuses on the handling of missing values.

6.2.4 Implementations

R packages As mentioned in the introduction, prior to the platform development, the
project started with the release of the MissingData CRAN Task View, which currently lists
approximately 150 R packages. The CRAN Task View is continuously updated, adding new
R packages, and removing obsolete ones. Packages are organized by topic: exploration of
missing data, likelihood based approaches, single imputation, multiple imputation, weighting
methods, specific types of data, specific application fields. We selected only those that were
sufficiently mature and stable, and that were already published on CRAN or Bioconductor.
This choice was made to ensure all listed packages can easily be installed and used by
practitioners.

Despite the Task View classifying packages into different sub-domains, it may still be a
challenge for practitioners and researchers inexperienced with missing values to choose the
right package for the right application. To address this challenge, we provide a partial, less
condensed overview on existing R packages on the platform, choosing the most popular and
versatile. This overview is a blend of the Task View, and the individual package description
pages and vignettes. For each selected package (7 at the date of writing of this article,
namely imputeTS, mice, missForest, missMDA, naniar, simputation and VIM), we provided
a category (in the style of the categorization in the Task View), a short description of
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use-cases, its description (as on CRAN), the usual CRAN statistics (number of monthly
downloads, last update), the handled data formats (e.g., data.frame, matrix, vector), a
list of implemented algorithms (e.g., k-means, PCA, decision tree), and the list of available
datasets, some references (such as articles and books) and a small chunk of code, ready for a
direct execution on the platform via the R package Documentation®. Figure 6.3 shows the
condensed view of the package page and the expanded description sheet of a given package
(here naniar).

We believe shortlisting R packages is especially useful for practitioners new to the field,
as it demonstrates data analysis that handles missing values in the data. We are aware that
this selection is subjective, and welcome external suggestions for other packages to add to
this shortlist.

Python modules To the best of our knowledge, there only exist very few implemented
methods for handling missing data in Python. However, one of the major libraries for machine
learning and data analysis, scikit-learn (Pedregosa et al., 2011) has recently proposed a
module for simple and multiple imputations, sklearn.impute. And, as an alternative, the
statsmodels® library now also has an implementation module for multiple imputation in
Python. We regularly survey new Python implementations for handling missing values and,
if pertinent from a theoretical and practical point of view, reference them on our platform.
We expect this to promote their use but also additional assessment by practitioners and
researchers from the missing values (statistics/machine learning) community.

6.2.5 Datasets

Especially in methodology research, an important aspect is the comparison of different
methods to assess the respective strengths and weaknesses. There are several datasets that
are recurrent in the missing values literature but, they have not been listed together yet.
We gathered publicly available datasets that have been used recurrently for comparison or
illustration purposes in publications, R packages and tutorials. Most of these datasets are
already included in R packages but some are available on other data collections. Figure 6.4
shows how the datasets are presented, with a detailed description shown for one of the dataset
(“Ozone”, obtained by clicking on its name). The description follows the UCI Machine
Learning Repository presentation (Dua and Graff, 2019), including a short description of
the dataset, how to obtain it, external references describing the dataset in more details, and
links to tutorials/lectures on our websites or to vignettes in R packages that use the dataset.

In addition, the Datasets section also references existing methods for generating missing
data, given assumptions on their generation mechanisms (as in the R package mice). These
datasets also serve as benchmark in the proposed workflows and allow for a fair and
transparent comparison between the different methods.

Note however, that the list of datasets we gather here is comparatively short when
compared to benchmark datasets for full data methods such as the UCI Machine Learning

Shttps://rdrr.io/snippets/
Shttps://wuw.statsmodels.org/stable/about.html
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R-miss-tastic Package:

naniar
A resource website on missing values - Methods and references for managing missing data Category:

R Packages Data Structures, Summaries, and Visualisations for Missing Data
This page provides introductions to popular missing data packages with small examples Use-Cases:

on how to use them. Thus the page gives more extensive information than the CRAN Visualization of missing values, descriptive statistics, ...

Task View on Missing Data, which is recommended to get a first overall overview about
the CRAN missing data landscape.

Popularity:

You can also contribute on your own to this page and provide a short introduction to a
missing data package. Take a look at this short description on how to do this. We are
very happy about all contributions.

Description:

Missing values are ubiquitous in data and need to be carefully explored and handled in
the initial stages of analysis. In this vignette we describe the tools in the package naniar

Sort by name | Sort by Category for exploring missing data structures with minimal deviation from the common

workflows of ggplot and tidy data.

. Last update:
. missMDA P

Category: Single and multiple Imputation, Multivariate Data Analysis

Datasets:

of or ical datasets; Missing
values are imputed with a principal component analysis (PCA), a
multiple correspondence analysis (MCA) model or a multiple factor
analysis (MFA) model; Perform multiple imputation with and in PCA or

* oceanbuoys
* pedestrian
* riskfactors

Further Information:

4000/month « Tiemey, N. J., & Cook, D. H. (2018). Expanding tidy data principles to facilitate
missing data and of i arXiv
preprint arXiv:1809.02264. PDF (on arXiv)
* Vignettes
.im puteTS * Related visdat R-package

Category: Time-Series Imputation, Visualisations for Missing Data Input:

Imputation (replacement) of missing values in univariate time series. data.frame, vector

Offers several imputation functions and missing data plots. Available Example:

. " ¥ . X :

imputation algorithms include: "Mean’, 'LOCF", 'Interpolation’, 'Moving P

Average', ‘Seasonal D ition', 'Kalman ing on Structural Uibrary(naniar)

Time Series models', 'Kalman Smoothing on ARIMA models'. data(airquality)

CRAN |2019-07-01

print("print data set with NAs")
print(head(airquality))

. ## Replace "NA" values with values 10% lower

« mice ## than the minimum value in that variable.

## This is done by calling the geom_miss_point() function
ggplot2: :ggplot(airquality,

Multiple ir using Fully Condit i ion (FCS) ggplot2::aes(x = Solar.R,
implemented by the MICE algorithm as described in Van Buuren and y = Ozone)) +
Groothuis-Oudshoorn (2011). Each variable has its own imputation

Category: Multiple Imputation

geon_miss_point ()

model. Built-in imputation models are provided for continuous data Here you can have a interactive look at the example:
(predictive mean matching, normal), binary data (logistic regression), Ubrary(naniar) =
data logistic and data(airquality)

ordered categorical data (proportional odds). MICE can also impute
" . print("print data set with NAs")

continuous two-level data (normal model, pan, second-level variables). print(head(airquality))

Passive imputation can be used to maintain consistency between ## Replace “NA” values with values 10% lower

variables. Various diagnostic plots are available to inspect the quality of ## than the minimum value in that variable. 5
X y ## This is done by calling the geom_miss_point() function

the imputations. aon1nt2: <aanlat (af ranal ity 4

more.. Run (Ctrl-Enter)

(a) Extract of global view (b) Description sheet

Figure 6.3: R packages overview.
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Repository. Therefore, our proposed list also serves as an invitation to tackle this lack of a
wider variety of common benchmark datasets in the missing data community.

6.2.6 Additional content

This unified platform collects and edits the contributions of numerous individuals who
have investigated the missing values problems, and developed methods to handle them for
many years. To provide an overview of some of the main actors in this field, the list of all
contributors who agreed to appear on this platform is given with links to their personal or
to their research lab website.

We also provide links to other interesting websites or working groups, not necessarily
working with R and Python (Van Rossum and Drake, 2009) but with other programming
languages such as SAS/STAT® and STATA (StataCorp., 2019).

The platform also provides two other features to engage the community:

1. a regularly updated list of events such as conferences or summer schools with special
focus on missing values problems, and

2. a list of recurring questions together with short answers and links for more details for
every question.

6.3 Workflows

After this general introduction to the R-miss-tastic project and platform and the overview
of its structure, we now turn to a more detailed presentation of the various workflows we
have developed and proposed on this platform.

To allow for both hands-on tutorials illustrating current practices and state-of-the-art
and ready-to-use pipelines, we propose the workflows under different formats such as HTML,
PDF, R Markdown (for R code) and IPYNB (for Python code). We encourage practitioners
and researchers to use and adapt these workflows, in order to increase reproducibility and
comparability of their work. Of course, we are aware that these workflows do not cover the
entire spectrum of existing methods and data problems. The goal of the proposed workflows
is rather to initiate a joint effort to create a larger spectrum of open-source workflows, and
to encourage the use of standardized procedures to handle missing values.

With an incomplete dataset at hand, prior to embarking on an in-depth statistical analysis,
a specific aim has to be defined in order to choose a specific method to use. An example
of a method whose success crucially depends on the analyst’s goal is mean imputation:
this approach is strongly contra-indicated if the aim is to estimate parameters, but it can
be consistent if the aim is to predict as well as possible (Josse et al., 2019). Following
this observation, our workflows are divided into different parts, defined by the objective of
the statistical analysis. We have tried to present and compare the main implementations
available both in R and Python for each objective. Currently there are seven workflows
available on the platform and we present their scope and use below.
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Incomplete data

The data sets listed below are either widely used in general in the missing data
community or used for illustration of different methods handling missing values in the
tutorials from the Tutorials and R packages sections. This presentation scheme is
inspired by the UCI Machine Learning Repository.

Click on a table entry to obtain further information about the data set.

% Complete
Attribute # # Missing data
Name Data Types Types Instances Attributes entries available Year
Airquality Multivariate, Real 154 6 7 No 1978
Time Series
chorizonDL Multivariate Integer, 606 110 15 Yes 1998
Real
Health Multivariate, Integer, 15,022 397 54 No 2017
Nutrition And Time Series Real
Population
Statistics
NHANES Multivariate Categorical, 10,000 75 37 No 2012
Integer,
Real
oceanbuoys Multivariate, Real 736 8 3 No 1997
Time Series
Ozone Multivariate Categorical, 366 13 6 No 1976
Integer,
Real

Los Angeles Ozone Pollution Data, 1976. This data set contains daily measurements of ozone concentration and
meteorological quantities. It can be found in R in the mlbench package and is loaded by calling data(0zone).

More information on the dataset.

Tutorials illustrating methods on this data:
o Julie Josse's course on missing values imputation using PC methods.
o Julie Josse's and Nick Tierney's tutorial on handling missing values. Download the data set from this
tutorial: ozoneNA.csv
e Nick Tierney's naniar vignette for missing data visualization.

pedestrian Multivariate, Categorical, 37,700 9 2 No 2016
Time series. Integer

Figure 6.4: Datasets overview.
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6.3.1 How to generate missing values?

Rubin (1976) classifies the cause for a lack of data into three missing data mechanisms. The
missing data mechanism is said to be: (i) missing completely at random (MCAR) if the lack
of data is totally independent of the data values, (ii) missing at random (MAR) if the process
that causes the missing data may only depend on the observed values and (iii) missing not
at random (MNAR) if the unavailability of the data depends on the missing variables, for
instance on their values themselves and possibly on the values of observed variables. More
formally, let us define the indicator matrix R € R™*P, which indicates the indices of the
observed values in X € R"*P ie., R;; = 1 if X;; is observed and R;; = 0 otherwise. The
missing data mechanism is then the distribution of the indicator matrix R given the data X.
The goal of this workflow is to propose functions to generate missing values under these
different mechanisms. The way in which the missing values are generated is crucial for
comparing methods (and studies) in a fair manner and is often subject of debate (Seaman
et al., 2013). This code aims to unify classical solutions to do this. Indeed, a usual strategy
to compare imputation or estimation strategies is to introduce (additional) missing values in
the dataset, and use the ground truth for these missing values to evaluate the strategies.

In R In the R workflow, the main function produce_NA allows to generate missing values
under the three missing-data mechanisms outlined above. This function internally calls
the ampute function of the mice package (Buuren and Groothuis-Oudshoorn, 2010) but
we chose to simplify its use while adding some additional options to specify the missing
values generation. In addition, the original ampute function generates missing values only for
complete dataset. In our workflow, the user can easily introduce (additional) missing values
in a complete or incomplete dataset composed of quantitative, categorical or mixed variables.
The three main arguments are the initial dataset (data) in which the missing values are
introduced using a given missing data mechanism (mechanism) and a given percentage of
missing values (perc.missing). For example, to introduce 20% of MCAR values in the
dataset X, the code is detailed below.

X.miss.mcar <- produce_NA(data = X,
mechanism = "MCAR",
perc.missing = 0.2)

X.mcar <- X.miss.mcar$data.incomp
#incomplete matrix containing (additional) missing values
R.mcar <- X.miss.mcar$idx_newNA # indicator matrix

Listing 6.1: Generating MCAR missing values in R.

The function returns the data matrix containing the new missing values (and the previously
present missing values of the input data) and the indicator matrix R.

To introduce missing values under the MAR and MNAR mechanisms, there are several
options detailed and illustrated in the workflow. We consider the definitions of the missing
data mechanisms of Rubin (1976). For instance, if X contains three variables denoted as
X1, X5, X3, two options are available to generate MAR, values:
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1.

1

2)

the first option consists of generating missing values in X; by using a logistic model
depending on (X3, X3), which are observed, i.e.

P(R1 = 0[X;¢) = 1/(1 + exp(—(d2 X2 + ¢3X3)),

where ¢ = (¢2, ¢3) is the parameter of the missing-data mechanism. In our function,
¢ is chosen so that the given percentage of missing values is reached. This allows to
obtain missing values in the first variable X i\TA. Then, the same strategy is performed
to introduce missing values in X5 and X3, by using a logistic model depending on
(X1, X3) (which are observed) and (Xi, X3) (which are observed) respectively. To
get the final matrix containing missing values, we concatenate XFA, X%\IA and X;I;\IA
by handling the rows containing only missing values. To use this option, the code is
detailed below.

X.miss.mar <- produce_NA(data = X, mechanism = "MAR",
perc.missing = 0.2, by.patterns = FALSE)

Listing 6.2: Generating MAR values in R.

the second option consists in generating the missing values by pattern, i.e., by rows. In
this case, the combinations of which variables are observed and missing are specified in
a pattern matrix. For the MAR mechanism, at least one variable must be observed.
An example (the choice by default) of such pattern matrix is

01 1
10 1],
110

where 0 indicates that the variable should have missing values whereas 1 means that
it should be observed. For example, the first pattern means that the observation has
a missing values in the first variable X; which depends on the values of X5 and X3
which are observed. The code below allows to choose this option.

X.miss.marpat <- produce_NA(data = X, mechanism = "MAR",
perc.missing = 0.2, by.patterns = TRUE)

Listing 6.3: Generating MAR values by patterns in R.

We propose several ways to generate missing values, under the MNAR mechanism,
including the most general one when the missingness depends on both the missing variables
and the observed variables. A particular case of a MNAR mechanism that we consider is the
self-masked one, if the unavailability of the data only depends on their values themselves.
The following code allows to introduce such missing values using a quantile censorship for
which the form is precised by the argument self.mask. The argument idx.incomplete
gives the indexes of the variables for which self-masked MNAR values should be introduced.

I X.miss.mnar <- produce_NA(X.complete, mechanism = "MNAR",

2

perc.missing = 0.2, self.mask = "lower",
idx.incomplete = c(1,1,1,1))

Listing 6.4: Generating self-masked MNAR values in R.
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The choice self.mask = "lower" in the above example specifies that the values are
amputed based on a quantile from the lower tail of the empirical distribution chosen such
that the target proportion of missing values is achieved.

In Python To our knowledge, there does not exist a specific module in Python to generate
missing values. The workflow we present now has therefore been developed in collaboration
with the principal author Boris Muzellec of the paper Muzellec et al. (2020) which suggests
a single imputation method based on optimal transport. To stay close to the R workflow, we
propose a function produce_NA which allows to easily generate missing values for a specific
missing-data mechanisms (mecha) and a given percentage of missing values (p_miss) in a
complete dataset (X), currently only allowed to contain quantitative variables. If the aim is
to introduce 20% of MCAR values, the following code can be used.

X_miss_mcar = produce_NA(X = X, p_miss = 0.2, mecha = "MCAR")
X_mcar = X_miss_mcar[’X_incomp’]

3 #incomplete matrix containing missing values

N}

R_mcar = X_miss_mcar[’mask’] #indicator matrix

Listing 6.5: Generating MCAR, values in Python.

The outputs of this function are the incomplete matrix with 20% MCAR values and the
indicator matrix R.

For the MAR mechanism, by contrast with the R workflow, the Python code relies on
the definition of Little and Rubin (2019). For instance, if we have X = (X3, X9, X3), then
at least one variable should be fully-observed (say X3) and missing values in X; and Xy are
introduced with the following logistic model,

P(R; =0|X;¢) = P(Ry = 0[X;¢) = 1/(1 + exp(—¢3X3),

with ¢ = ¢3 the parameter of the missing-data mechanism chosen to reach the given
percentage of missing values. To introduce 20% missing values in each missing variable (i.e.,
X1 and X3), the following code can be used, with p_obs the proportion of fully observed
variables.

X_miss_mar = produce_NA(X=X, p_miss=0.2,
mecha="MAR", p_obs=0.3)

Listing 6.6: Generating MAR values in Python.

For the MNAR mechanism, three main options are available, using a logistic model, a
quantile censorship or a logistic model for a self-masked mechanism (for their exact definition,
we refer to the workflow). For example, to introduce 20% of self-masked missing values (in
all the variables), we can use the code below.

X_miss_selfmasked = produce_NA(X=X, p_miss=0.4,
mecha="MNAR", opt="selfmasked")

Listing 6.7: Generating self-masked MNAR, values in Python.
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6.3.2 How to impute missing values?

There exists a vast literature on how to impute missing values. The aim of these workflows
(in R and Python) is to compare the most classical imputation methods and to propose
a reference pipeline for comparison on simulated and real datasets, which can be easily
extended with other imputation methods. Different types of methods are included:

1. imputation by the mean, which serves as a naive benchmark.

2. conditional models, if, roughly speaking, the imputation relies on the distributions of
each variable given the others.

e in R:

— mice (Buuren and Groothuis-Oudshoorn, 2010): it allows to compute multiple
imputations by chained equations and thus returns several imputed datasets.
We use the predictive mean matching method (default method) and aggregate
the complete datasets using the mean of the imputations to get a simple
imputation.

— missForest (Stekhoven and Bithlmann, 2012): it imputes missing values
iteratively by training random forests.

e in Python:

— IterativeImputer of scikit-learn library (Pedregosa et al., 2011): this function
is inspired by mice, but it uses (iterative) regularized imputation using
conditional expectation and provides a simple imputation. We also use the
ExtraTreesRegressor estimator of Iterativelmputer, which trains iterative
random forests.

3. low-rank based models, if the data matrix to impute is assumed to be low rank and
the similarities between the variables (or the observations) may inform the imputation,

e in R:
— softImpute (Hastie et al., 2015): it minimizes the reweighted least squares
error penalized by the nuclear norm.

— missMDA (Josse et al., 2016a): it minimizes the reweighted least squares
error penalized by a mix between the fo-norm and £g-norm.

e in Python: softImpute (coded in Python by ourselves).

4. recent methods (for the Python workflow only) using optimal transport or variational
autoencoders, variables (or the observations) may inform the imputation,

e in Python:

— MIWAE (Mattei and Frellsen, 2019): it imputes missing values with a deep
latent variable model based on importance weighted variational inference.
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— Sinkhorn (Muzellec et al., 2020): it extracts randomly several batches and
consists in minimizing optimal transport distances between batches to impute
missing values.

Other methods such as GAIN (Yoon et al., 2018) which uses generative adversarial nets,
have not yet been compared, as they are close to those already being compared, but will be
added in the future.

The metric we choose to compare the methods is the mean squared error (MSE), which
can be calculated if the ground truth of the missing values is known. More precisely, the
procedure is the following one: (i) we have access to a complete dataset X, (ii) missing values
are introduced in X and we get an incomplete dataset XN, (iii) this incomplete dataset is
imputed and we obtain an imputed dataset X™P. The MSE for X'™P is computed as follows

. 1 i
MSE(X™,X) = —— 232 ey (X5 = X)?
i J

where nna = >}, >, 1{X7}\JI_A=NA} is the number of missing entries in XA, Note that this

procedure can also be performed on an incomplete dataset by introducing additional missing
values. However, for now, both R and Python notebooks only consider complete datasets.

In R This workflow first presents the main imputation methods available in R, including
mice, missForest, softImpute and missMDA.

We compare the methods on a simulated dataset X € R™*? under the multivariate
Gaussian law X ~ N (p,Y), with p the mean vector and ¥ the covariance matrix. The
function HowtoImpute compares the imputation methods by introducing missing values in a
complete dataset (X) using different percentages of missing values (perc.list) and missing
data mechanisms (mecha.list). It returns the mean of the methods’ MSEs for the different
missing values settings by taking the average over nbsim repetitions. The code to use this
function is given below. For the sake of clarity, in the workflow, all the code is detailed
and commented. The output of this function and its associated plot are shown in Figure
6.5, when n = 1000,d = 10, p; = 1, Vi€ {1,...,d} and ¥;; = 0.5if ¢ # j € {1,...,d} and
¥;; = 1if i = j. For the MCAR mechanism, the methods perform well, while for the MNAR
mechanism, the results are close to those of the naive imputation by the mean. As expected,
most methods give worse results for high percentages of missing values.

perc.list = ¢c(0.1, 0.3, 0.5)
#list of the percentages of missing values

3 mecha.list = c("MCAR", "MAR", "MNAR") #list of the missing-data mechanisms

res <- HowToImpute(X = X, perc.list = perc.list,
mecha.list = mecha.list, nbsim = 10)

Listing 6.8: Code to compare imputation methods for different missing-values settings in R.
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0.1 MCAR 0.3 MCAR 0.5 MCAR 0.1 MAR 0.3 MAR 0.5 MAR 0.1 MNAR 0.3 MNAR 0.5 MNAR

X.pca 0.74 0.76 0.78 0.75 0.78 0.81 0.76 0.78 0.81
X.forest 0.77 0.8 0.86 0.78 0.81 0.87 0.78 0.81 0.88
X.mice 0.82 0.83 0.86 0.83 0.86 0.9 0.84 0.87 0.9

X.soft 0.93 0.86 0.87 0.97 1 1.1 1 1.1 1.1
X.mean 1 0.99 1 1.1 1.1 1.1 1.2 1.1 1.1

(a) Output of the function HowtoImpute in R. The results are truncated to two decimals.

MNAR
11-
Methods
1.0- Mean
L Mice
0
= -~ PCA
8- RandomForest
0.9- Softimpute
0.8- //’

01 03 05
Percentage of NA

(b) Example of plot for the MNAR mechanism (one plot per mechanism).

Figure 6.5: Tabular and graphical output of the R function HowtoImpute. The methods
mice, missForest, softImpute and missMDA are compared with the naive imputation by the
mean for several percentage of missing values (10%, 30%, 50%). The mean of the MSEs
computed for several introductions of missing values are given. In the tabular, the results
are showed for several mechanisms (MCAR, MAR, MNAR) and the plot corresponds to the
MNAR mechanism.

We also propose a function HowToImpute real which gives the comparison of the
imputation methods for a list of datasets (datasets_list) and for a given missing data
mechanism (mech) and a given percentage of missing values (perc). This can be particularly
useful for practitioners who would like to have an indication which method might be most
suited for a or several specific datasets. This function returns a table containing the mean of
the MSEs for the simulations performed and a table for the summary plot showed in Figure
6.6. An example of how to use this function in practice is detailed below. Here, the real
datasets are taken from the UCI repository.

| datasets_list <- list(

2 wine_white = wine_white,
wine_red = wine_red,
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Figure 6.6: Graphical output of the R function HowToImpute real. The methods mice,
missForest, softImpute and missMDA for several real datasets in which 10% MCAR missing

values have been introduced.

slump = slump,
movement = movement,
decathlon = decathlon

) # list of different datasets
<- c("winequality-white", "winequality-red",
"movement", "decathlon")
# names of the different datasets
perc <- 0.2 # percentage of missing values to introduce
mecha <- "MCAR" # missing data mechanism to use
howimp_real <- HowToImpute_real(
datasets_list =

names_dataset

datasets_list ,

perc = perc,
mech = mecha,
nbsim = 10,

names_dataset = names_dataset

)
plotdf _fin <- howimp_real$plot
res <- howimp_real$res

" slump L

Listing 6.9: Code to compare imputation methods for different datasets in R.

In Python The Python workflow is very similar to its R counterpart.

The classical

imputation methods that we consider are softImpute, Iterativelmputer and we compare
them to very recent approaches using optimal transport with the Sinkhorn module and
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Figure 6.7: Graphical output of the Python function HowToImpute real. The methods
softImpute, Iterativelmputer, Sinkhorn, MIWAE and the imputation by the mean are
compared for several real datasets in which 10% MCAR missing values have been introduced.

autoencoders with the MIWAE module. The code for the function Python HowToImpute is
provided below.

perc_list = [0.1, 0.3, 0.5] #list of the percentages of missing values
mecha_list = ["MCAR", "MAR", "MNAR"] #list of the missing-data mechanisms
results_how_to_impute = HowToImpute(x_comp=x_comp ,

perc_list=perc_1list,
mecha_list=mecha_list , nbsim=10)

Listing 6.10: Code to compare imputation methods for different missing-values settings in
Python.

Similarly, the following code for the function HowToImpute_real in Python can also be
used. The graphical output of this code is given in Figure 6.7.

datasets_list = dict(wine_white=wine_white, wine_red=wine_red, slump=slump)
# dictionary of different datasets

names_dataset = [’wine_white’,’wine_red’,’slump’]

# names of the different datasets

perc = [0.1] # percentage of missing values to introduce

mecha = ["MCAR"] # missing-data mechanism to use

results_how_to_impute_real = HowToImpute_real(
datasets_list=datasets_list,
perc=perc, mecha=mecha, nbsim=10,
names_dataset=names_dataset)

Listing 6.11: Code to compare imputation methods for different datasets in Python.

An additional workflow has been written by an external contributor, Frangois Husson
(Professor in Statistics, France) and reviewed by us. It specifically compares imputation
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methods using variational and denoising autoencoders (Gondara and Wang, 2018; Mattei
and Frellsen, 2019; Abiri et al., 2019) with classical methods such as the low-rank based
method (Josse et al., 2016a). These deep learning methods often require parameter settings.
In this workflow, an automatic tuning is suggested. In addition, the methods are compared
for several simulation scenarios, when the variables of the dataset are linearly linked or not.
In both cases, deep learning methods do not outperform the low-rank method, although they
are known to be able to handle non-linear relationships. This workflow is available on our
website. 10

6.3.3 How to estimate parameters with missing values in R?

This workflow is dedicated to a specific inferential framework when the aim is to estimate
linear and logistic regression parameters for multivariate normal data. It is currently
only available in R, as there are no analogous implementations available in Python to our
knowledge.

In this workflow, two classical methods are compared, using available R implementations:
the EM algorithm for logistic and linear regression with the package misaem (Jiang et al.,
2020) which uses the SAEM algorithm, Stochastic Approximation of EM algorithm (Delyon
et al., 1999) and multiple imputation with the package mice. Both strategies are valid under
the MAR missing data mechanism.

The EM algorithm (Dempster et al., 1977) allows to handle MAR missing values
in maximum likelihood estimation by integrating over the missing values distribution,
conditionally on the observed values. A drawback of this approach is that it requires a
separate derivation of the expectation and maximization steps for each model and data type,
such as linear regression and logistic regression on multivariate normal covariates. More
particularly, multiple imputation allows any method to be applied once the imputation is
done, whereas the EM algorithm requires a new variant of the algorithm for each statistical
method. Besides, note that mice does not rely on parametric assumptions about the data
distribution, whereas misaem assumes Gaussian covariates.

If we assume that we have a binary response variable y and incomplete covariate matrix
X_NA composed of five covariates and whose full data counterpart follows a multivariate
normal distribution and where the missing values are MAR, we can fit a logistic regression
with missing values using the following lines of code.
df _NA <- data.frame(y, X_NA)
miss_list <- miss.glm(y~., data=df_NA)

Listing 6.12: Code to fit a logistic regression model with incomplete covariates using the EM
algorithm in R.

This functions miss.glm resembles the standard glm function both in terms of its
signature and output. Below we provide an example of output when applying the function
summary to the output of the above call to miss.glm.

YOhttps://rmisstastic.netlify.app/how-to/external/comparison_imputation_deep_classical
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# Summary
print (summary (miss_list))

##

## Call:

## miss.glm(formula = y ~ ., data = df_NA)
##

## Coefficients:

## Estimate Std. Error
## (Intercept) 0.05128 0.31942
## X1 1.05798 0.35989
## X2 -0.99347 0.19620
## X3 1.07606 0.13937
## X4 -0.02258 0.06604
## X5 -1.01527 0, 13358

## Log-likelihood: -132.14

Listing 6.13: Summary of a fitted logistic regression model with incomplete covariates in R.

The rationale behind the popular multiple imputation approach is to create M > 1
complete datasets by imputing the missing values with “plausible” values, and then to
estimate a parameter of interest # on each of the imputed datasets. The multiple estimation
of # and their variability allow to reflect uncertainty due to the unknown missing values.
The parameter estimation is performed by applying the analytic method we would have used
had the data been complete. We assume that this provides, for each imputed dataset, an
estimate of the parameter € and an estimate of the corresponding variance. These quantities
are finally “pooled” by using specific rules named “Rubin’s rules” (Rubin, 2004), leading to
a final point estimate with a corresponding estimation of its variance that takes into account
the uncertainty due to the missing values. In the following, we will compare this method to
EM and illustrate the bias and variance of estimation by an example of simulated dataset.

Using the same example as for the EM algorithm, we can fit a logistic regression model
using multiple imputation and inspect its summary as follows:

mi <- mice(data.frame(y, X_NA), m=20) # imputation of 20 complete datasets

fit <- with(data = mi, exp = glm(y ~ X1+X2+X3+X4+X5, family = binomial)) #
fit

beta.mi <- mice::pool(fit) # pool the results using Rubin’s rules

summary (beta.mi)

## term estimate std.error statistic df p.value
## 1 (Intercept) 0.04006508 0.32034287 0.1250694 325.01965 9.005460e-01
## 2 X1 0.85919319 0.35413092 2.4262021 178.92213 1.625036e-02
## 3 X2 -0.85098985 0.19626265 -4.3359745 123.30329 2.983626e-05
## 4 X3 0.99568077 0.14825886 6.7158263 85.76393 1.934425e-09
## 5 X4 -0.04100766 0.06938153 -0.5910457 126.65685 5.555431e-01
## 6 X5 -0.92834313 0.14636424 -6.3426908 65.36987 2.423562e-08

Listing 6.14: Code to fit a logistic regression model with incomplete covariates using multiple
imputation in R.

For this simulated data set, which follows the multivariate normal distribution, misaem
gives less biased results than mice. This was expected as misaem fits here perfectly with the
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parametric assumptions.

The workflow allows to directly apply and compare these two approaches, using either
a simulated dataset, or a custom dataset that the user believes to satisfy the above stated
assumptions about the missing data mechanism and distribution of the covariates.

6.3.4 How to predict in the presence of missing values?

A key task in supervised learning is prediction. Knowing how to predict in the presence of
missing values is thus crucial for many practitioners. More precisely, we assume that the
missing values occur in the covariates X. In this context, the goal is to predict an outcome
variable y such that y = f(X) + €, where € is a noise term. As a reminder, in supervised
learning, the algorithms learn on a training set where the outcome variable is assumed to be
known and the results of new (incomplete) observations in the test set are then predicted by
applying this learning. Both R and Python workflows present different strategies to deal
with the missing values in X (in the train set and in the test set). This task has been studied
in detail by Josse et al. (2019). The recommended method is to impute the train set and
the test set with the same constant, as the mean, and then apply a universally consistent
learner, i.e. very powerful and able to learn any function f (linear or not, etc), such as the
gradient boosting. This method has been shown asymptotically consistent. Besides, when
random forests are used to impute the missing values, the authors recommend to use the
Missing Incorporated in Attributes method (Twala et al., 2008), which allows imputation
and prediction to be performed in a single step.

In R This R workflow has been written by an external contributor of the website, Katarzyna
WozZnica (PhD student, Poland). It assesses a popular strategy (two-step strategy) which
consists of imputing the train set and the test set independently with the same imputation
method and of using usual learning algorithms to predict a target variable. Several imputation
methods are compared, such as mice, missForest and softImpute. This work is also available
on our website.!! Note that until recently, using the popular mice package for learning
predictive models for incomplete data in R was hindered by the fact that it did not allow
to use the same imputation model for the train ad the test set. This has however been
addressed and the detail of this recent extension can be found on GitHub.!'?

In Python The Python workflow proposes to compare two strategies when the aim is to
predict a target variable and the covariates may contain missing values:

1. The two-step strategy consists in imputing the missing values both in the train and the
test set like mean imputation and IterativeImputer of the scikit-learn library, and
to apply usual learning algorithms (such as random forests, gradient boosting, linear
regression) on the complete dataset. This learning algorithm can be applied on X but
also by adding the response pattern R to the covariates: [X, R].

YUhttps://rmisstastic.netlify.app/how-to/external/how_to_predict_in_r
2https://github. com/amices/mice/issues/32
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2. The one-step strategy aims at predicting with learning methods adapted to the missing
data without necessarily imputing them, such as the Missing Incorparated in Attributes
(MIA) method (Twala et al., 2008).

We propose a function, score_pred, which compares these strategies in terms of prediction
performances by introducing missing values in the covariates (x_comp) under a specific missing
data mechanism (mecha) and a given percentage of missing values (p). This introduction
of missing values is repeated several times (nbsim) which leads to a stochasticity in the
results. The dataset is then split into the train set and the test set (75% in the train set,
25% in the test set) and the methods presented below are applied by considering a specific
learning algorithm (learner), e.g. the random forests, gradient boosting, linear regression.
It returns the prediction error on the test set, by comparing the ground truth (y) and the
predicted outcome values on the test set for each simulation (introduction of missing values)
in a tabular (see Figure 6.8) The code of this function is given below, when the learning
algorithm is the gradient boosting and 20% of MCAR values are introduced. The covariates
X € R1000x3 are generated under the multivariate Gaussian distribution, the parameter of
the regression 3 € R? is a random uniform distribution. y is generated considering a linear
regression such that y = X + ¢, with € a Gaussian noise.

learner = HistGradientBoostingRegressor () #learning algorithm to use
p=0.2
res = score_pred(x_comp=X, y = y, learner=learner , p=p,

nbsim=10, mecha="MCAR")

Listing 6.15: Code to compare different strategies to predict an output variable in Python.

Figure 6.9 shows the graphical output of this function performed for different learning
algorithms and for different missing-data mechanisms. When the learner is the linear
regression, the two-steps methods with added mask, both for the MCAR mechanism and the
MNAR mechanism, performs well. Note that the simulated dataset is generated considering
a linear regression, which explains why the linear regression gives better results than other
learners. In addition, for the MNAR mechanism, the one-step strategy MIA (especially when
the gradient boosting is performed) seems to be a good choice. Note that MIA or mean
imputation are recommended asymptotically but when having limited data in the prediction
setting, other methods such as multiple imputation can outperform these asymptotically
consistent methods (Josse et al., 2019).
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“m fterative + Mask “

0.892 0.895 0.892 0.895 0.892
0.885 0.896 0.885 0.896 0.891
0.895 0.89 0.895 0.89 0.903
0.866 0.836 0.866 0.836 0.873
0.881 0.863 0.881 0.863 0.887
0.859 0.862 0.859 0.862 0.865
0.9 0.91 0.9 0.91 0.905
0.86 0.852 0.86 0.852 0.847
0.897 0.899 0.897 0.899 0.911
0.879 0.872 0.879 0.872 0.883

Figure 6.8: Output of the function score_pred to compare different strategies when the
aim is to predict in Python. 20% of missing values are introduced in a simulated dataset
using the MCAR mechanism. The two-steps strategies (Iterativelmputer and the mean
imputation) with or without adding a mask and the one-step strategy MIA are compared in
terms of prediction error, and then a gradient boosting is performed. The closer the result is
to 1, the more accurate the prediction is (1 corresponds to the perfect prediction, 0 to the
worst prediction). The results in the tabular corresponds to the prediction error for several
simulations (introduction of missing values).

Another function plot_score_realdatasets is specifically designed to handle datasets
which already contain missing values. The main arguments are the dataset (X), the outcome
variable (y) and the learning algorithm to use (learner) In this case, the stochasticity
comes from the way we split the dataset into a train set and a test set. This splitting and
subsequent learning is repeated several times.
learner = HistGradientBoostingRegressor () #learning algorithm to
2 p = plot_score_realdatasets(X = X, y = y, learner = learner)

Listing 6.16: Code to compare different strategies for a real dataset to predict an output
variable in Python.
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Figure 6.9: Plot of the function score_pred to compare different strategies when the aim is
to predict in Python. 20% of missing values are introduced in a simulated dataset using the
MCAR mechanism or the MNAR mechanism. The two-steps strategies (Iterativelmputer
and the mean imputation) with or without adding a mask and the one-step strategy MIA are
compared in terms of prediction error, and several learner are performed (linear regression,
random forests, gradient boosting). The closer the result is to 1, the more accurate the
prediction is (1 corresponds to the perfect prediction, 0 to the worst prediction).

This concludes the overview over the workflows which have been developed in this project
and which we consider as an invitation to other practitioners and researchers to use them for
better comparability between methodologies when suggesting new methodologies in research
articles and to extend them by providing feedback and ways of improvement which can
benefit all potential users.

6.4 Perspectives and future extensions

By providing a platform and community to discuss missing data, software, approaches and
workflows, we are providing a base from which we can grow.

6.4.1 Towards uniformization and reproducibility

One way to promote and encourage practitioners and researchers in their work with missing
values is to provide community benchmarks and workflows centered around missing data.
We will continue working on our workflows and the corresponding source code. In doing
so we hope to encourage users to continue benchmarking new methods and to present the
results in a clear, fair, and reproducible way.
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In addition, we plan to propose two types of data challenges - 1) imputation and
estimation, and 2) analysis workflows. For the first challenge, the objective is to find the
best imputation or estimation strategy. The community would be given a dataset with
missing values, for which there is actually a hidden copy of the real values. The community
is then tasked with creating imputed values, which are assessed against the original dataset
with complete values, to determine which imputation is best. This is similar in spirit to
the Netflix prize (Bennett et al., 2007) and the M4 challenge in the time series domain
(Makridakis et al., 2018). This benchmarking could be extended to other areas, such as
parameter estimation, and predictive modeling with missing data.

Analysis workflow could form another community challenge, assessed in a similar way to
existing “datathon” events where entries are assessed by an expert panel. Here the challenge
could be to develop workflows and data visualizations from complex data. The data could
have challenging features, and be combined from various data with complex structure, such
as those data with several types of missingness, images, text, data, longitudinal data, and
time series.

As has been demonstrated with data competition, involving the community brings
forth many creative solutions and discussions that advance the field, and challenge existing
strategies.

6.4.2 Pedagogical and practical guidance

In addition to the benchmarks and data challenges, we also plan to provide further guidance
for both learning or teaching, and for applying the existing methods. For instance, an FAQ
section is available on the platform, which answers prominent questions recurrent in lectures
and talks, and for which the answers cannot always be found directly in the bibliography
and lecture materials. Questions we receive on our platform, via the contact form or at other
occasions, will also be posted there together with a concise answer.

6.4.3 Outreach

Despite the initial anchoring in the R community, we work in close collaboration with other
communities, in particular with several developer teams of the scikit-learn library Pedregosa
et al. (2011). Such collaborations have allowed us to integrate new workflows, to share
respective experiences with missing values and to reach an even larger audience.

6.4.4 Participation and interaction

This platform is aimed to be for the community, in the sense that we welcome every comment
and question, encourage submissions of new work, theoretical or practical, either through
the provided contact form or directly via the GitHub project repository'®. We have already
received much useful feedback and contributions from the community, organized several
remote calls and working sessions at statistics conferences. We are planning on regularly

Bhttps://github.com/R-miss-tastic/website
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relaunching calls for new material for the platform, for instance through the R consortium
blog!*, R-bloggers'® and social media platforms. We also intend to use these channels to
communicate more generally about the platform and the topic of missing values.

In order for the platform to be a reference to the community, it needs to provide regularly
updated user friendly content. Crucial to this is proposing sustainable and accessible solutions
for the maintenance of the R-miss-tastic platform. We hope that the well documented code
source of the platform invites contributions and community feedback on this project.

The aim of this platform is to go further than only community participation, namely
to seed meaningful community interactions, and make it a hub of communication among
groups that rarely exchange, both within, and between academia and industry communities.

6.4.5 Future extensions

Potential extensions that could be added in future releases of the platform and for which we
welcome suggestions and contributions are the following: a workflow with a focus on MNAR
data and different solutions that can handle such data (as diversity of existing solutions is
large, such a unified workflow will be a consequential contribution); for more applied users,
a comparison of computation times of different methods, benchmarked on various types of
data; a more and more often encountered problem of missing values in data integration:
questions such as what do I do when I have clinical data from multiple centers with different
mechanisms of missing values or with systematically missing values in certain data? or what
do I do when I have time series and missing values in one of the groups of variables?
More generally, these are examples to explain how we intend to update the platform with
relevant results and recommendations from current research around missing values.
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Conclusion

Summary

The key objective of this dissertation was to propose theoretically sound methods with
associated efficient implementations for dealing with missing data in realistic scenarios from
different statistical frameworks. In particular, I studied low-rank models, PPCA, averaged
SGDs, robust lasso and clustering methods with missing values. I considered missing data
mechanisms which go beyond the classical MCAR or MNAR on one variable, by considering
heterogeneous MCAR, MNAR on several variables and MNAR coupled with M(C)AR
variables. In addition, I also considered heterogeneous data (categorical, continuous, mixed).
A constant motivation was to make the methods applicable to real-world problems, such as
those raised by the Traumabase dataset.

In the first part, several methods have been proposed for dealing with several MNAR
or MAR variables in low-rank models by leveraging their ability to summarise a dataset
by a few important variables (and individuals profiles). In Chapter 2, as a starting point,
two approaches have been suggested to take into account self-masked MNAR data in a
low-rank model (with fixed effects), in order to recover the underlying low-rank structure
and impute the data accordingly. These approaches consist in modeling, either explicitly or
implicitly, the joint distribution of the data and the missing-data mechanism. On the one
hand, an accelerated EM algorithm has been derived, coupled with the Sampling Importance
Resampling algorithm. It provides a suitable framework for theoretical analysis, at the price
of an expensive computational cost. On the other hand, a heuristics that does not model the
missing-data mechanism has been suggested. It consists of concatenating the data matrix
and the missing-data pattern and of assuming a low-rank structure on this augmented matrix,
in order to take into account the relationships between the variables and the mechanism.
Classical strategies assuming M(C)AR data can be then performed. Although this heuristics
is computationally efficient, it has no theoretical grounding. Our experimental study has
shown that even though our accelerated EM algorithm provides better results in terms of
imputation and estimation errors, our heuristics is a relevant alternative computationally
efficient, especially useful when many variables are missing. In Chapter 3, this work has been
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extended to the low rank model with random effects (PPCA) in order to handle (general)
MNAR data, addressing both the theoretical challenges and the computational burden.
First, the identifiability of the parameters is studied, which is a key issue for the MNAR
mechanism. Then, consistent estimators of the parameters and an imputation method have
been proposed, which do not require the knowledge of the missing data mechanism and use
only all available observed cells. Although this method leads to an efficient algorithm relying
on strong theoretical guarantees, there are still points of improvement to be worked on, as it
requires the knowledge of both the rank of the loading coefficients and the noise variance.

In the second part, the crucial issue of handling missing data in learning tasks has been
addressed. In Chapter 4, one of the most popular learning algorithms, the averaged SGD, has
been adapted to handle missing values to perform linear regression, when the covariates may
contain heterogeneous MCAR values. The powerful properties of the averaged SGD without
missing data have been exploited to propose an easy-to-implement algorithm, suitable to the
high-dimensional and online setting: it consists of naively imputing the missing values by
zeros, and of using debiased gradients to account for the imputation error. This algorithm
remains computationally cheap per iteration and relies on weak assumptions on the data
distribution. I then established the convergence of this algorithm in terms of excess risk
at the rate 1/k at iteration k. This rate is remarkable as it is optimal and similar to the
rate of the averaged SGD without any missing value. By considering a simple linear case
with heterogeneous MCAR data, this work also aimed to take a first step towards solving
two open questions, particularly relevant in real data analysis: the treatment of missing
values in large-scale datasets, and in an online setting (when the data come as they go
along). In Appendix A, in a high-dimensional setting, a problematic reformulation for
dealing with MNAR, data in the case of sparse linear regression has also been proposed. In
Chapter 5, the focus is made on the model-based clustering framework. New algorithms
are derived to cluster individuals and to estimate the parameters of the mixture model in
presence of several MNAR variables of different types (continuous, categorical). This work
also includes an exhaustive catalog of possible MNAR specifications in the model-based
clustering, accompanied with a detailed study of each model both in terms of identifiability
and resulting estimation strategy.

During this PhD, wishing to push the reproducibility cursor further, it was important to
me to promote the study of missing data and to facilitate its management and understanding.
To this end, I took part in the development of an open source platform, Rmisstastic, which
is an ongoing collaborative project. In particular, I have created several workflows, both
in R and Python, which address the main issues raised by missing values (e.g. imputation
or prediction). These are targeted to students or researchers who are familiar with missing
data but also at data scientists and practitioners for whom the choice of a particular method
for handling missing data is often a crucial and delicate issue.
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Perspectives

While this work answers some questions regarding the processing of missing data, it also
opens up exciting new perspectives.

(1)

(iii)

A first extension of the work presented on low-rank models in Chapters 2 and 3 to
the exponential family would allow to deal with (missing) count data, which could be
a great improvement. Indeed, this could be especially useful to make these methods
even more suitable for real datasets. Furthermore, estimations of the rank and of
the noise variance in low-rank models with MNAR data remains non-trivial. Note
that a preliminary noise variance estimation allows a rank estimation, so that a cross-
validation strategy to estimate the noise variance by adding MNAR values is a line of
work deserving further research.

Focusing on SGDs for linear models with heterogeneous MCAR data, the work presented
in Chapter 4 definitely paves the way for promising future research, as stochastic
algorithms are at the heart of modern machine learning techniques. This work differs
from the rest of this dissertation, as it does not deal with MNAR data, and a first
ambitious extension will be to adapt the averaged SGD to more complex missing-
data types. In addition, deep learning models, for which the training relies on the
SGD algorithm, are undoubtedly flexible for dealing with more complex data types in
different learning tasks (Goodfellow et al., 2016). Another extension of our work could
be therefore to deal with more general loss functions, such as the logistic one, widely
used to train neural networks in a classification setting.

These two extensions are challenging, because the bias introduced is not the same as
the one considered in the case of linear regression with heterogeneous MCAR data.
Preliminary numerical experiments show that it is difficult to adapt the SGD algorithm
to more complex cases, and even more to theoretically study the new algorithm.
Achieving these extensions would make two great contributions.

As the clustering with MNAR data is an undergoing work (Chapter 5), there is still
numerical work to do. For instance, the application of our method to the Traumabase
dataset will be extremely interesting, as it can be genuinely useful to form groups of
similarly-behaving patients and by doing so to improve their care.

Building on the strengths of different scientific communities, another exciting and
useful perspective for MNAR data could be to provide a unified reviewing work on
identifiability methods, by bringing together the literature considering graphical models
and the one on semi-parametric models.

Going further than the themes studied in this manuscript, my bibliographic work on
MNAR data has led me to believe that there are also interesting bridges to exploit
between (a) the literature based on purely statistical methods, such as semi-parametric
models in the framework of linear regression where only the output variable may contain
MNAR values, and (b) the literature of semi-supervised learning when the unlabeled
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data correspond to classes not present in the labeled data (Oliver et al., 2018). Note
that in the statistical literature, the inferential framework is often considered, when the
aim is to estimate the model parameters (such as regression coefficients). Meanwhile,
in the semi-supervised learning, the goal is the prediction of the observations labels
(for example with image classification tasks). Even though there are some differences,
we can leverage both literatures: (a) by benefiting from the theoretical background of
the statistical literature on the one hand, and (b) exploiting the flexibility of recent
semi-supervised learning algorithms to efficiently handle complex data types on the
other hand.
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Appendix A

Robust Lasso-Zero

This chapter is an ongoing work, led by
Pascaline Descloux, in which 1
collaborated with Claire Boyer, Julie
Josse and Sylvain Sardy.

Abstract

We propose Robust Lasso-Zero, an extension of the Lasso-Zero methodology (Descloux and
Sardy, 2020), initially introduced for sparse linear models, to the sparse corruptions problem.
We give theoretical guarantees on the sign recovery of the parameters for a slightly simplified
version of the estimator, called Thresholded Justice Pursuit. The use of Robust Lasso-Zero
is showcased for variable selection with missing values in the covariates. In addition to not
requiring the specification of a model for the covariates, nor estimating their covariance
matrix or the noise variance, the method has the great advantage of handling missing not-at
random values without specifying a parametric model. Numerical experiments and a medical
application underline the relevance of Robust Lasso-Zero in such a context with few available
competitors. The method is easy to use and implemented in the R library lassO.

A.1 Introduction
Let us consider the widely used framework of sparse linear models for high dimension,
y=XB"+¢ (A.1)

where € € R” is a (dense) Gaussian noise vector with variance o2, X has a number of columns
p larger than the number of rows n, and the parameters of interest 5 € RP is s-sparse (only
s out of its p entries are different from zero). To take into account additional occasional
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corruptions, the sparse corruption problem is
y=XB% 4+ v/nw’ + e, (A.2)

where w” € R™ is a k-sparse corruption vector; see for instance Chen et al. (2013). Noting
that (A.2) can be rewritten as

y=[X «/nl] [gg] +¢,

the sparse corruption model can be seen as a sparse linear model with an augmented design
matrix and an augmented sparse vector. We are interested in theoretical guarantees of
support recovery for 3° in (A.2), with interesting consequences for variable selection with
missing covariates.

Related litterature. To recover 3° when e = 0, several authors proposed Justice Pursuit
(JP), name coined by Laska et al. (2009), by solving

e 18111 + llwls (A.3)
s.t. y=XB+w,

(A.4)

which is nothing else than the Basis Pursuit (BP) problem, with the augmented matrix
[X I,] (modulo the renormalization by 4/n in (A.3)) (Wright et al., 2009). Wright and Ma
(2010) analyzed JP for Gaussian measurements, providing support recovery results when
n ~ p using cross-polytope arguments. Besides, Laska et al. (2009) and Li et al. (2010)
proved that if the entries of X are i.i.d. standard Gaussian as well, then the matrix [X In]
satisfies some restricted isometry property with high probability, implying exact recovery
of both £% and w?, provided that n = (s + k) log(p). However, in these works, the sparsity
level k of w® cannot be fixed to a proportion of the sample size n. Therefore, Li (2013) and
Nguyen and Tran (2013b) introduced a tuning parameter A > 0 and solve

i A . =X . A.
i B+ Al sty =X +w (A.5)

In a sub-orthogonal or Gaussian design, they both proved exact recovery, even for a large
proportion of corruption.

In the case of sparse (w” # 0) and dense noise (¢ # 0), Nguyen and Tran (2013a) proposed
to jointly estimate 8° and w” by solving

1
i Sy — X8 —w|)? . .
i 2lly = X8 = wlf + AsllBlh + Aol (4.6)

In the special case where A\g = A, problem (A.6) boils down to the Lasso (Tibshirani, 1996)
applied to the response y and the design matrix [X In]. Assuming a standard Gaussian
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design and the invertibility and incoherence properties for the covariance matrix, they
obtained sign recovery guarantee for an arbitrarily large fraction of corruption, provided that
n = Cklog(p)log(n). In addition, the required number of samples is proven to be optimal.
More recently in the case of a Gaussian design with an invertible covariance matrix, Dalalyan
and Thompson (2019) obtained an optimal rate of estimation of 8% when considering an
{1-penalized Huber’s M-estimator, which is actually equivalent to (A.6) (Sardy et al., 2001).

Contributions. To estimate the support of the parameter vector $° in the sparse
corruption problem, we study an extension of the Lasso-Zero methodology (Descloux and
Sardy, 2020), initially introduced for standard sparse linear models, to the sparse corruptions
problem. We provide theoretical guarantees on the sign recovery of 3° for a slightly simplified
version of Robust Lasso-Zero, that we call Thresholded Justice Pursuit (TJP). These garantees
are extensions of recent results on Thresholded Basis Pursuit. The first one extends a result
of Tardivel and Bogdan (2019), providing a necessary and sufficient condition for consistent
recovery in a setting where the design matrix is fixed but the nonzero absolute coefficients
tend to infinity. The second one extends a result of Descloux and Sardy (2020), proving sign
consistency for correlated Gaussian designs when p, s and k grow with n, allowing a positive
fraction of corruptions.

Showing that missing values in the covariates can be reformulated into a sparse corruption
problem, we recommand Robust Lasso-Zero for dealing with missing data. For support
recovery, this approach requires neither to specify a model for the covariates or the missing
data mechanism, nor an estimation of the covariates covariance matrix or of the noise
variance, and hence provides a simple method for the user. Numerical experiments and a
medical application also underline the effectiveness of Robust Lasso-Zero with respect to few
competitors.

Organization. After defining Robust Lasso-Zero in Section A.2, we analyse the sign
recovery properties of Thresholded Justice Pursuit in Section A.2.3. Section A.3.1 is dedicated
to variable selection with missing values and the selection of tuning parameters is discussed
in Section A.3.2. Numerical experiments are presented in Section A.4 and an application in
Section A.5.

Notation. Define [p] := {1,...,p}, and the complement of a subset S < [p] is denoted
S. For a matrix A of size u x v and a set T < [v], we use A7 to denote the submatrix
of size n x |T'| with columns indexed by T'. We define the missing value indicator matrix
M e R"*P by M;; = ]l{Xilxjr_A:NA}, and the set of incomplete rows by M :={i € [n] | M;; =
1 for some j € [p]}.
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A.2 Robust Lasso-Zero

A.2.1 Lasso-Zero in a nutshell

Under linear model (A.1), Thresholded Basis Pursuit (TBP) estimates 8Y by setting the
small coefficients of the BP solution to zero. Since BP fits the observations y exactly,
noise is generally overfitted. Lasso-Zero (Descloux and Sardy, 2020) alleviates this issue by
solving repeated BP problems, respectively fed with the augmented matrices [X |G("€)]7 where
GW®) e R*n I = 1,..., M, are different i.i.d. Gaussian noise dictionaries. Hence, some
columns of G*) can be used to fit the noise term. The obtained estimates (1), ..., 3(M) are
then aggregated by taking the component-wise medians, further thresholded at level 7 > 0.
Descloux and Sardy (2020) show that Lasso-Zero tuned by Quantile Universal Thresholding
(Giacobino et al., 2017) achieves a very good trade-off between high power and low false
discovery rate compared to competitors.

A.2.2 Definition of Robust Lasso-Zero

Robust Lasso-Zero arises by applying Lasso-Zero to Justice Pursuit, instead of Basis Pursuit.
Consider the sparse corruption model (A.2), for which S° and T° denote the respective
supports of 8 and w?, and s := |S°| and k := |T°| denote their respective sparsity degrees.
To fix notation, we then consider the following parametrization of Justice Pursuit (JP):

(BT, %) e argmin [|8]1 + Alwlli st y=XB + vnw. (A7)

BERP, weR™

Renormalization by 4/n balances the augmented design matrix [X y/nly,]: in practice the
columns of X are often standardized so that || X3 = n for every j € [p], and this way, all
columns of [X y/nI,] have same norm.

Robust Lasso-Zero applied to (A.7) is fully described in Algorithm 5. Attention has been
drawn to the estimation of the support of 5°. However the estimation of the corruption
support is also possible by computing the corresponding vectors d)f\ned and ng‘f)so, at stages 2))
and 3)).

Since the minimization problem (A.8) in Algorithm 5 can be recast as a linear program,
any relevant solver can be used (e.g., proximal methods). Algorithm 5 includes two hyper-
parameters: the regularization parameter A of (A.7), and the thresholding parameter 7 of
the Robust Lasso-Zero methodology. Their choice in practice is discussed in Section A.3.2.

A.2.3 Theoretical guarantees on Thresholded Justice Pursuit

Discarding the noise dictionaries in Algorithm 5 amounts to thresholding the solution
(Aip,&)ip) to the Justice Pursuit problem (A.7). Robust Lasso-Zero can therefore be
regarded as an extension of this simpler estimator, which we call Thresholded Justice Pursuit
(TJP): R )

BER = (3P  and  alP) = no@fP). (A.9)

We present two results about sign consistency of TJP.
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Algorithm 5 Robust Lasso-Zero
Given data (y, X), for fixed hyper-parameters A > 0,7 > 0 and M € N* :

1) Fork=1,...,M:

i) generate a matrix G(¥) of size n x n with i.i.d. A/(0,1) entries
ii) compute the solution (Bg\k),djf\k), ﬁ/(\k)) to the augmented JP problem

(5P, 5P 50) ¢

ST arg min 181l + Alleolls + lIvIlx

BeERP, weR™, yeR" (A.8)
s.t. y=XpB+vnw+ G(k)'y.

2) Define the vector ﬁAf\nCd by

B;\I?Jed = median{ﬁgf;,k =1,...,M} forevery je€ [p].

3) Calculate the estimate B(R)\laf)so = nT(Bﬂ\ned), where n,(z) = 217 4q(|2]) hard-

thresholds component-wise.

A.2.3.1 Identifiability as a necessary and sufficient condition for consistent sign
recovery

First introduced in Tardivel and Bogdan (2019) for the TBP, we propose the following
extension of the identifiability notion for the TJP.

Definition 24. The pair (8%, w°) € RP x R™ is said to be identifiable with respect to X € R™*P
and the parameter \ > 0 if it is the unique solution to JP (A.7) when y = X3° + /nw®.

It is worth noting that identifiability of (3°,w") can be shown to depend only on sign(3")
and sign(w"), as highlighted in the following result.

Lemma 5. The pair (8°,w°) € RP x R" is identifiable with respect to X € R™ P and the
parameter X > 0 if and only if for every pair (B,w) # (0,0) such that X3 + v/nA"'w =0,

|sign(8°)7 8 + sign(w”) w| < ||Bgsll + llwgal:-
Proof. See Appendix A.6. O

In order to show that identifiability is necessary and sufficient for TJP to consistently
recover sign(4Y) and sign(w®), assume that for a fixed matrix X € R™ P and a sequence
{(B7), W)} enx, the following holds:

(i) there exist sign vectors 6 € {1, —1,0}? and 6 e {1,—1,0}" such that sign(8(")) =  and
sign(w(™) = @ for every r € N*,
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(11) hm’f'—""‘oo mln{ﬁmln’ mln} - +OO Where /Bmln = minjesupp(ﬁ) |ﬁJ’7

mln{ﬁr(r’:‘l)n w g1>n}

max [0 oo T} = 4

(iii) there exists ¢ > 0 such that

These assumptions are similar to the ones of Tardivel and Bogdan (2019). We use the notation
SV = supp(d) = supp(B(T)) and 70 .= supp(é) — supp(w). We denote by ( JP(T), A:]\P(T))

the JP solution when y = y(" X6 4+ /nw +e, and (BEFJE)( ),wa‘]f)( )) the corresponding
TJP estimates.

Theorem 25. Let A > 0 and let X be a matrix of size n X p such that for any y €
R", the solution to JP (A.7) is unique. Let {(8),w())},en+ be a sequence satisfying
assumptions ((1))-((iii)) above. If the pair of sign vectors (6,0) is identifiable with respect to
X and A, then for every e € R™, there exists R = R(€) > 0 such that for every r = R there is
a threshold T = 7(r) > 0 for which

mgn(ﬁo\f =60 and sign(cb(T)\JP(T)) — 0. (A.10)

7T)

Conversely, if for some € € R" and r € N* there is a threshold T > 0 such that (A.10)
holds, then (0,6) is identifiable with respect to X and \.
Proof. See Appendix A.6. O

Remark 26. One might be interested in recovering the signs of the sparse corruption. If
w() is considered as noise, then only the recovery of sign(ﬂ(r)) matters. In this case one

could weaken assumptions ((ii)) and ((iii)) above by replacing min{ﬁgi)n,wgi)n} by Br(;)n, and

identifiability of (0,0) would be sufficient for recovering sign(5°). However, recovery of both
sign(8) and sign(w'™) is needed for proving necessity of identifiability.

Identifiability of sign vectors is necessary and sufficient for sign recovery when the nonzero
coeflicients are large. However, Theorem 25 does not provide a lower bound indicating how
large these coefficients should scale to be correctly detected. In the next section, we make
this explicit in particular for (correlated) Gaussian designs and prove that sign consistency
holds, allowing p, s and k to grow with the sample size n.

A.2.3.2 Sign consistency of TJP for correlated Gaussian designs
We make the following assumptions:

(iv) the rows of X € R™*P (with n < p) are random and i.i.d. NV (0,X);

(v) The smallest eigenvalue of the covariance matrix ¥ is assumed to be positive: Apin (2) >
0,

(vi) the variance of the covariates is equal to one: ¥;; = 1 for every i € [p];

(vii) the noise is assumed to be Gaussian: € ~ N(0,021,).
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Assumptions ((iv)) and ((v)) imply that almost surely rank X = n.

Theorem 27. Under Assumptions ((iv))-((vii)), choosing A = \/lcl)@ ensures with probability
2

greater than 1 — ce=¢™ —1.147" — 2¢~ 5 (VP=V) , that there exists a value of T > 0 such that

sign(5{yr)) = sign(8°).

provided that

K(2)
n = Cmslogp, (A.11)
n 1 k(2
% = max{C/, é”) } ) (A-12)

0 10v2max{1, \}o\/p + n
min ' 1/2°
<>\m12(2)< /p/n _ 1)2 + 1)

where k(X)) := ir“f”‘((g)) is the conditioning number of X3, and C,C",C" are some numerical
constants with C > 1442

(A.13)

Proof. See Appendix A.7. O

Theorem 27 ensures that, for correlated Gaussian designs and signal-to-noise ratios
high enough, TJP successfully recovers sign(3°) with high probability, even with a positive
fraction of corruptions. As a consequence, if ¥ is well-conditioned, (i.e. the eigenvalues of
Y are bounded: 0 < 71 < Apin(X) < Anax(X) < 92) and p/n — § > 1, TJP achieves sign
consistency provided that n = Q(slogp), k = O(n) and %, = Q(y/n). The lower-bound
required on ﬁxonin in Theorem 27 is of the same order as the one required for TBP in Descloux
and Sardy (2020). One can remark that the analysis of TJP in the sparse corruption setting
makes the condition number of ¥ come into play in the lower-bounds required on n and k.
This quantity seems natural to arise in the sparse corruption problem helping discriminating
design instability from corruptions.

A.3 Model selection with missing covariates

In practice the matrix of covariates X is often partially known due to manual errors, poor
calibration, insufficient resolution, etc., and one only observes an incomplete matrix, denoted
XNA,

Theoretical guarantees of estimation strategies or imputation methods rely on assumptions
regarding the missing-data mechanism, i.e. the cause of the lack of data. Three missing-data
mechanisms have been introduced by Rubin (1976): the restrictive assumptions of data
(a) missing completely at random (MCAR), and (b) missing at random (MAR), where
the missing data may only depend on the observed variables, and (c) the more general
assumption of data missing not at random (MNAR), when data missingness depends on the
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values of other variables, but also on its own value. Complete case analysis, which discards
all incomplete rows, is the most common method for facing missing values in applications.
Additionally to the induced estimation bias (especially under the MNAR missing mechanism
(c)), with high-dimensional data this procedure has the big disadvantage that missingness of
a single entry causes the loss of an entire row, which contains a lot of information when p is
large.

High dimensional variable selection with missing values turns out to be a challenging
problem and very few solutions are available, not to mention implementations. Available
solutions either require strong assumptions on the missing value mechanism, a lot of
parameters tuning or strong assumption on the covariates distribution which is hard in
high dimensions. They include the Expectation-Maximization algorithm (Dempster et al.,
1977) for sparse linear regression (Garcia et al., 2010) and regression imputation methods
(Van Buuren, 2018). A method combining penalized regression techniques with multiple
imputation and stability selection has been developed (Liu et al., 2016). Yet, aggregating
different models for the resulting multiple imputed data sets becomes increasingly complex
as the number of data grows. Rosenbaum et al. (2013) modified the Dantzig selector by
using a consistent estimation of the design covariance matrix. Following the same idea,
Loh and Wainwright (2012) and Datta et al. (2017) reformulated the Lasso also using an
estimate of the design covariance matrix, possibly resulting in a non-convex problem. Chen
and Caramanis (2013) presented a variant of orthogonal matching pursuit which recovers
the support and achieves the minimax optimal rate. Jiang et al. (2019) proposed Adaptive
Bayesian SLOPE, combining SLOPE and Spike-and-Slab Lasso. While some of these methods
have interesting theoretical guarantees, they all require an estimation of the design covariance
matrix, which is often obtained under the restrictive MCAR, assumption.

A.3.1 Relation to the sparse corruption model

To tackle the problem of estimating the support when the design matrix is incomplete, we
suggest an easy-to-implement solution for the user, which consists in imputing the missing
entries in XNA with the imputation of his choice to get a completed matrix X, and to take
into account the impact of the possibly occasional poor imputation as follows. Given the
matrix X, the linear model (A.1) can be rewritten in the form of the sparse corruption
model (A.2), where w” := ﬁ(X — X)f° is the (unknown) corruption due to imputations.
In classical (i.e. non-sparse) regression, one could not say much about w® without any prior
knowledge of the distribution of the covariates or the missing data mechanism. Since the
key point here is that when 3° is sparse, then so is w, even if all rows of the design matrix
contain missing entries. Indeed, for every i € [n],

1 & - 1 .
0 0 0
wl = — DXy — Xij)B) = —= > (Xij — Xij) 80, (A.14)
\n = vn Porc?
SO w; 1s nonzero only 1f the " row o contains missing value(s) on the support since
?' ly if th jth f xNA i issing val () h PP SO, i

(Xi5 — X}j) = 0 if X;; is observed. So the problem of missing covariates can be rephrased
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as a sparse corruption problem, as already pointed out in Chen et al. (2013). We propose
to use Robust Lasso-Zero presented in Section A.2.2, which comes with strong theoretical
guarantees, to tackle this sparse corruption reformulation, see Algorithm6.

Note that if the i*! row of X is fully observed, then w? = 0 by (A.14). Thus the dimension
of w® can be reduced by restricting it to the incomplete rows of XN, The corruption vector
wY is now of size [M| and (A.2) becomes

y= XA+ vnlyw® +e. (A.15)

Algorithm 6 Robust Lasso-Zero for missing data
Given data (y, XNA), for fixed hyper-parameters A > 0,7 > 0 and M € N*:

1) Impute XNA and rescale the imputed matrix X such that all columns have Euclidean
norm equal to 4/n.

2) Run Algorithm 5 with the design matrix X.

A.3.2 Selection of tuning parameters

Algorithm 6 required selection of two hyper-parameters. Under the null model, no sparse
corruption exists: indeed if 8 = 0, so is w° since w® = ﬁ(X — X)B° = 0. This property
allows us to opt for the Quantile Universal Threshold (QUT) methodology (Giacobino et al.,
2017), generally driven by model selection rather than prediction.

QUT selects the tuning parameter so that under the null model (8° = 0), the null
vector B = 0 is recovered with probability 1 — a. Under the null model, y = € whatever the
missing data pattern is. Then given a fixed value of A and a fixed imputed matrix X, the
corresponding QUT value of 7 is the upper a-quantile of || Bﬁ\ned (€)]loo, where Bi\ned (¢) is the
vectors of medians obtained at stage 2)) of Algorithm 5 applied to X and y = €. To free
ourselves from preliminary estimation of the noise level o, we exploit the noise coefficients
4() of Robust Lasso-Zero to pivotize the statistic ||Bf\“ed(e)|]oc7 as explained in Descloux and
Sardy (2020).

For every A > 0, there is a pair of QUT parameters ()\,TO(?UT(y; A)) at level a. The
remaining question is how to choose A. For a fair isotropic penalty on §,w and v, we fix

A=1

A.4 Numerical experiments

We evaluate the performance of Robust-Lasso Zero when missing data affect the design
matrix. The code reproducing these experiments is available at https://github.com/
pascalinedescloux/robust-lasso-zero-NA.
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A.4.1 Simulation settings

Simulation scenarios. We generate data according to model (A.1) with the covariates
matrix obtained by drawing n = 200 observations from a Gaussian distribution N (0, X),
whereY € R?00%200 j5 5 Toeplitz matrix, such that i = pli=i |; the variance of the noise
o = 0.5 and the coefficient 5° are drawn uniformly from {+1}. We vary the following
parameters:

e Correlation structures indexed by p with p = 0 (uncorrelated) and p = 0.75 (correlated);
e Sparsity degrees indexed by s with s € {3,10}.

Before generating the response vector y, all columns of X are mean-centered and standardized;
Missing data are then introduced in X according to two different mechanisms, MCAR or
MNAR, and in two different proportions. Any entry of X is missing according to the following

logistic model
1

where @ > 0 and b € R. Choosing a = 0 yields MCAR data, whereas a = 5 leads to MNAR
setting in which high absolute entries are more likely to be missing. For a fixed a, the value
of b is chosen so that the overall average proportion of missing values is 7, with 7 = 5% and
7 = 20%.

Two sets of simulations are run. The first one is “s-oracle”, meaning that the tuning
parameters of the different methods are chosen so that the estimated support has correct
size s. In the second set, no knowledge of s, 8% or ¢ is provided.

P(XNA =NA | Xjj=2) =

Estimators considered. We compare the following estimators:

e Rlass0: the Robust Lasso-Zero described in Algorithm 6 using M equal to 30. The
tuning parameters are obtained using A = 1 and selecting 7 by quantile universal
threshold (QUT) at level a = 0.05.

e lassO: the Lasso-Zero proposed in Descloux and Sardy (2020). The automatic tuning
is performed by QUT, at level o = 0.05.

e lasso: the Lasso (Tibshirani, 1996) performed on the mean-imputed matrix whre the
regularization parameter is tuned by cross-validation.

e NClasso: the nonconvex /¢; estimator of Loh and Wainwright (2012). It is only
included under the s-oracle setting, as selection of the tuning parameter in practice is
not discussed in their work.

e ABSLOPE: Adaptive Bayesian SLOPE of Jiang et al. (2019).
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Performance evaluation. The performance of each estimator is assessed in terms of the
following criteria, averaged over 100 replications:

e the Probability of Sign Recovery (PSR), PSR = P(sign(j3)=sign(5°)),

e the signed True Positive Rate (STPR), where s-TPR = E(s-TPP) with

{5 | B9 >0,8 >0} +{j | 8)<0,5 <0}

-TPP :=
i Ed ’

(A.16)

which is the proportion of nonzero coefficients whose sign is correctly identified;
e the signed False Discovery Rate (sFDR): s-FDR = E(s-FDP) with

S| =143 | B)>0,8 >0}~ {j | B <0,5 <0}

s-FDP = =
max{L, |3}

, (A.17)

which is the proportion of incorrect signs among all discoveries.

A.4.2 Results
A.4.2.1 With s-oracle hyperparameter tuning

Under the s-oracle tuning, an s-TPP (A.16) of one means that the signs of % are exactly
recovered, and the s-TPP is related to the ssFDP (A.17) through s-FDP = 1 —s-TPP. That
is why, in Figure A.1, only the average s-TPP and the estimated probability of sign recovery
are reported.

Small missingness — High sparsity (5% of NA and s = 3). In the non-correlated
case, in Figure A.1 (a) and (c), MCAR and MNAR results are similar across methods. With
correlation, in FigureA.1 (b) and (d), RlassO improves PSR and sTPR, specially with MNAR
data.

Increasing missingness — High sparsity (20% of NA and s = 3). The benefit of
RlassO is noticeable when increasing the percentage of missing data to 20%, for both
performance indicators. Indeed, with no correlation (Figure A.1 (a)(c)(bottom left)), the
improvement is clear when dealing with MNAR. With correlation (Figure A.1 (b)(d)(bottom
left)), RlassO outperforms the other methods: while the improvement can be marginal when
compared to lassO for MCAR, it becomes significant for MNAR.

Lower sparsity (s = 10). The performance of all estimators tends to deteriorate. One
can identify two groups of estimators: RlassO and lassO generally outperforms lasso and
NClasso, except with a high proportion (20%) of MNAR missing data for which they all
behave the same. While comparable when s = 10, Rlass0 proves to be better than lass0 in
the case of a small proportion of MNAR missing data (5%).
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A.4.2.2 With automatic hyperparameter tuning

Figures A.2 and A.3 point to the poor performance of lasso in terms of PSR for all experimental
settings. The automatic tuning, being done by cross-validation, is known to lead to support

overestimation. Indeed, its very good performance in sTPR is made at the cost of a very
high sFDR.

Small missingness — High sparsity (5% of NA and s = 3). In Figures A.2(a)(top
left) and A.3(a)(c)(top left), for the non-correlated case, Rlass0, lassO and ABSlope performs
very well, providing a PSR and s-TPR of one, and a s-FDR of zero, either when dealing with
MCAR or MNAR data (the lasso being already out of the game). In Figures A.2(b)(top
left) and A.3(b)(d)(top left), adding correlation in the design matrix seems beneficial for
ABSlope, at the price of high FDR, however.

Increasing missingness — High sparsity (20% of NA and s = 3). With no correlation,
one sees in Figure A.2(a)(bottom left) that RlassO provides the best PSR, whatever the type
of missing data is. One could also note that the performances in terms of PSR of either
lassO or ABSLOPE are extremely variable depending on the type of missing data (MCAR or
MNAR) considered: the PSR of lass0 is comparable to the one of RlassO when facing MCAR
data and is much lower than the one of Rlass) when facing MINAR data; the converse is true
for ABSLOPE.

Regarding the s-TPR and s-FDR results in Figure A.3 (a-d)(bottom left), the following
observations hold in both correlated or non-correlated cases:

(i) With MCAR data, all the methods behave similarly in terms of s-TPR, identifying cor-
rectly signs and coefficient locations in the support of 8%, see Figure A.3(a)(b)(bottom
left);

(ii) With MNAR data, lasso and ABSLOPE remain stable in terms of s-TPR, providing
an s-TPR of one, whereas the s-TPR of Rlass0O deteriorates (to 0.6 and 0.5 respectively
for the non-correlated and correlated cases), and even worse for lass0, see Figure
A.3(a)(b)(bottom left);

(iii) Lasso and ABSLOPE lead to high s-FDR, while lassO and Rlass0 always give the best
s-FDR, see Figure A.3(c)(d)(bottom left).

Lower sparsity (s = 10). For low missingness (5%), see Figure A.2 (a)(b) (top right),
ABSLOPE gives high PSR. In terms of s-TPR, lasso and ABSLOPE have high TPR. Moreover
Rlass0 improves s-TPR compared to lassO specially for a small proportion of MNAR missing
data. In terms of s-FDR, lassO and RlassO bring very low s-FDR, proving their FDR stability
with respect to MCAR/MNAR data, and correlation.
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Variable RlassO lassO lasso ABSLOPE
Age
SI

Delta.hemo

Lactates

Temperature
VE —

RBC

DBP.min

HR.max
SI.amb

oo o o |
DO OO OO OO0
o | oo o o |

\

o o o |

0 +
Table A.1: Sign of estimated effects on the platelet for Rlass0, lass0O, lasso or ABSLOPE.
Variables not shown here are not selected by any method.

A.4.2.3 Summary and discussion

The results of experiments with s-oracle tuning (Section A.4.2.1) show that Robust Lasso-
Zero performs better than competitors for sign recovery, and is more robust to MNAR data
compared to its nonrobust counterpart when the sparsity index and/or proportion of missing
entries is low. In particular, Robust Lasso-Zero performs better than NClasso, one of the
rare existing ¢1-estimator designed to handle missing values.

While not designed to handle MNAR data, ABSLOPE appears to be a valid competitor in
terms of s-TPR or PSR when the model complexity increases, and when dealing with MNAR,
data. Its poor performance in FDR in such settings reveals its tendency to overestimate the
support of 3%, under higher sparsity degrees, and with informative MNAR missing data.

With automatic tuning (Section A.4.2.2), Robust Lasso-Zero is the best method overall.
Moreover, our results show that the choice of Robust Lasso-Zero tuned by QUT, with its low
s-FDR, is particularly appropriate in cases where one wants to maintain a low proportion of
false discoveries.

A.5 Application to the Traumabase® dataset

We illustrate our approach on the public health APHP (Assistance Publique Hopitaux de

Paris) TraumaBase® Group for traumatized patients. Effective and timely management of
trauma is crucial to improve outcomes, as delays or errors entail high risks for the patient.

In our analysis, we focuse on one specific challenge: selecting a sparse model from data
containing missing covariates in order to explain the level of platelet. This model can aid
creating an innovative response to the public health challenge of major trauma. Explanatory
variables for the level of platelet consist in fifteen quantitative variables containing missing
values, which have been selected by doctors. They give clinical measurements on 490 patients.
In Figure A.4, one sees the percentage of missing values in each variable, varying from 0
to 45% and leading to 20% is the whole dataset. Based on discussions with doctors, some
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variables may have informative missingness (M(N)AR variables). Both percentage and nature
of missing data demonstrate the importance of taking appropriate account of missing data.
More information can be found in Appendix A.8.

We compare Robust Lasso-Zero to Lasso-Zero, Lasso and ABSLOPE. The signs of the
coefficients are shown in Table A.1. LassO does not select any variable, whereras its robust
counterpart selects three. According to doctors, Robust Lasso-Zero is the most coherent.
Indeed, a negative effect of age (Age), vascular filling (VE) and blood transfusion (RBC')
was expected, as they all result in low platelet levels and therefore a higher risk of severe
bleeding. Lasso similarly selects Age and VE, but also minimum value of diastolic blood
pressure DBP.min and the maximum heart rate HR.maz. The effect of DBP.min is not what
doctors expected. For ABSLOPE, the effects on platelets of delta Hemocue (Delta. Hemocue),
the lactates (Lactates), the temperature (Temperature) and the shock index measured on
ambulance (SI.amb), at odds with the effect of the shock index at hospital (SI), are not in
agreement with the doctors opinion either.

A.6 Proof of Theorem 25

Lemma 5 implies that under the sign invariance assumption ((i)), identifiability of (8", w(")
is equivalent to identifiability of (6, ).

Proof of Lemma 5. Note that (ﬁ)\ ,@3P) is a solution to JP (A.7) if and only if (,8/\ ,3F) =
(3, A7), where (8,®) is a solution to

i tooy=X 2w, A18
(ﬁ’wr)relﬁ&anHm‘l"'HWHl st y=XB+VnAw (A.18)

So (B8°,w") is identifiable with respect to X and A > 0 if and only if the pair (8%, \w?) is
the unique solution of (A.18) when y = X3° + /nw". But (A.18) is just Basis Pursuit with
response vector y € R™ and augmented matrix [X \/ﬁ)\*lln] , 80 by a result of Daubechies
et al. (2010) this is the case if and only if for every (3,w) # (0, 0) such that X 3++/nA"tw = 0,
we have |sign(8°)78 + sign(w®)Tw| < ||Bgsll1 + [lwssll1, which proves our statement. O

We will need the following auxiliary lemma.

Lemma 6. Under assumptions ((i)) and ((ii)), if the pair (0,0) is identifiable with respect
to X and A, then for any e € R™,

where u, := ||BM]1 + NJw®;.

Pmof First note that by assumption ((ii)), lim,_, 4o u, = +00. Now let € € R™ and denote by
(B P(e),&{F (€)) the JP solution when y = e. In particular, one has € = X 33" (€) + /n@3F (e),
so for every r € N*,

¥ = X (B0 + B () + Vi) + &5 ().
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Hence (8(") + Bip(e),w(’”) + &3P (¢)) is feasible for JP when y = y(), so

AJ ~JP(r
1827 1+ Aller™ Iy

Uy
_ 185+ B (Ol + Me™ + & (o)
v 3JP ~JP (A-19)
_ WB™1 + Mlw ) + B ()l + Mes™ (@)lh)
~ ur
N 188" ()l + Alls” (e) [l
Uy '
Therefore
1 ~iP(r ~JP(r .
(B = B+ A" =)

<;%wwmh+Mwmu> U8+ M@y )

r

5J ~JP(r A.20
1B+ 21Ol (420
Uy
1B @l + Mg )
Uy ’

1837 (@l +A 1937 (O l11

Ur

using (A.19) for last inequality. Since lim,_, 4 = 0, and since f} —

IP(r) _ a(r)
1BIl1 + Allw]|1 defines a norm on RP*™ one deduces that the sequence u% [@)J‘P(T) B i(r)] is

bounded. Therefore we need to check that every convergent subsequence converges to zero.

Let ip
1 5A @) _ g(s(r)
gy |@iF O — (@)

(with ¢ : N* — N* strictly increasing) be an arbitrary convergent subsequence. Since

1690+ Al
Uy

(A.21)

(r) JP(r)
for every r, and by (A.19), the sequences u% [g(r)} and u% [fﬁp(r)] are bounded as well.
A

Hence without loss of generality (otherwise, reduce the subsequence),
1 (o(r))
r—+00 ’LL¢(,,,) w 1)
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and

_ 1 2P (¢(r)) !
lim — [g/\P(qﬁ(T)) = { }] (A.23)

T Ug(r) 2

/
for some [Vl} , [V}] € RP*T™, By (A.21), one necessarily has

120} 1/2
[l + Allvell = 1, (A.24)
and (A.19) implies that
vl + Allwally < 1. (A.25)
Now
3IP(r) _ SIPM) () ") _ (x50 (r)
X
lim (B M) + V/n(@) ) _ i Y (XB") + ynw'™)
r—-+00 Uy r——400 Uy
— lim =0,
r—+00 Uy

so one deduces that
AJP
. g | B fugry
i [X /] [ RCCIN it [ VL] | e Jugiry|”
so by (A.22) and (A.23),
v} 1

X nl,] | = [X /nl,] e (A.26)

Assuming for now that (v1,12) is identifiable with respect to X and A, equality (A.26)

/
together with (A.24) and (A.25) imply that [Z}} = [Zl] , hence
2 2

- 1 BiPw(r)) B ICO) [ [w] o
r—+400 ud,(r) @;]\P(QS(T)) — w(¢(7")) - I/é 125} - 0|
It remains to check that (v1,12) is identifiable with respect to X and A, which we will do
using Lemma 5. Note that (A.22) and assumption ((i)) imply

sign(vy) =60 — ¢, (A.27)
sign(vg) = 0 — 0, (A.28)

where 9 =01, ;—0,20}, and 0 HJ (v2.,=0,3, 20}’ and hence

supp(v1) = supp(f) L supp(¢’) = SO L supp(¢'), (A.29)

supp(v2) = supp(#) L supp §’ = TO L supp f'. (A.30)
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Consider a pair (38,w) # (0,0) such that X3 + /nA"lw = 0. By (A.27) and (A.28),

|sign(v1) 78 + sign(v)Tw| = |(0 — )8 + (0 — 0') w|

; _ A.31
< |75 + 6wl + 1) 8| +1(8) . A3y

But since (6, 0) is identifiable with respect to X and A, Lemma 5 implies |67 3 + 0Tw| <
18551 + llwgsll1- Plugging this into (A.31) gives

|sign(1)” 8 + sign(v2)w| < 1Bzl + sl + 1078 + 1(6) el
< 1Bgulls + 1Bsupp(ony 1 + llwgolls + oy I
— 1Byl + lle

H17

Supp l/1 Supp V2

where the equality comes from (A.29) and (A.30). By Lemma 5, one concludes that (v1, v2)
is identifiable with respect to X and A. O

Proof of Theorem 25. Let us assume that (6, 9~) is identifiable with respect to X and A, and
let € € R™. By Lemma 6,

1 [BFO 0| o
TETOOW[@P(M_W(T) = lo) (4.32)

Since

min{1, A} max{[| 570, || [0} <y < (1S°] + AT} max{[| 57, 010},

. . . 1 ﬁJP(T) B 0
(A.32) is equivalent to lim,_, 44 (T GBI AJP(T) L0 [0] . Therefore there
exists R > 0 such that for every r > R,
AJP(r r q r r
1837 = 8o < L mac 18 o, oo} (A.33)
and
™ = wloe < F max{|80 o, ™ oc}. (A.34)
Setting 7 := max{||ﬁ(r)\|oo, w0}, (A.33) implies that |Bg\§(r)| < 7 for every j ¢ S9,
hence ﬂT)\JP)(;) = 0. If j € SV, assumption ((iii)) implies
1871 = B, = 27, (A.35)
and by (A.33), we have
B - ) <, (A.36)

so (A.35) and (A.36) together imply |ﬁA : | > 7 and sign(ﬁiP(T ) = &gn(ﬁ ) So we conclude
that sign(Ban)(T)) = sign(8(")). Analogously, (A.34) implies sign (& ( )(T)) = sign(w(™).

172



Appendiz A. Robust Lasso-Zero A.7. Proof of Theorem 27

Conversely, let us assume that for some e € R", r € N* and 7 > 0,

sign(B0") =0, sign(@i ") = 0. (A.37)

Note that the JP solution (Bip(r), wjp(”) is unique by assumption, hence (B:]\P(T),d)ip(r)) is

identifiable with respect to X and X. Now by (A.37), all nonzero components of  and 6 must

r) P(r)

have the same sign as the corresponding entries of 3iP( and df)]\ respectively. Hence

0 = sign(f) = sign(ﬁipm) -9,
. . P (A.38)
6 = sign(f) = sign(wy, ') — 4,
where 0; = Sign(Bﬁi(r))ﬂ{Bipmgﬁo 6,-0} and &; = Sigﬂ(@ii(ﬂ)ﬂ{@fwgo 5i=0)" and
7] K 71 "W
50 = supp() = supp(42F ") L supp(s
s pp(0) = supp(B) ) L supp(d) (A.30)

79 = supp(f) = supp(@)" ")) L supp().

In order to apply Lemma 5, let us consider a pair (3,w) # (0,0) such that X3+ /nA"lw = 0.
By (A.38), one has

1076 + 6Tw| = | sign(BiP(r))Tﬁ —oTp + sign(@ip(r))Tw — 67w
\sign(BiP(T))Tﬁ + sign(d}f\P(r))TM + |5Tﬁ\ + \STw]
Hﬁw\h + meﬂl + [1Bsupp) 11 + [ Wsupp() 1t
= |Bgollr + [lwgslli,
5JP(r) ~JP(r)y . . .
where we have used Lemma 5 and the fact that (5, “’,&) ') is identifiable with respect

to X and A in the last inequality, and (A.39) for the last equality. Lemma 5 concludes our
proof. O

A.7 Proof of Theorem 27

Proof of Theorem 27. We define X := [X /nl,],and 0 = [g] = XT(XXT)"te. We will

assume for now that the following properties hold.

i) Every pair (f,w) such that X + y/nw = 0 satisfies

1Bsolly + Allwrolly < S (185l + Allwzally),

W =

i) (|72 < —

(,\miz(z) (\/1%_1)24‘1)1/2 .
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Since X7 = X3 + \/n@ = €, one can rewrite model (A.2) as
y=X(°+5) + Vn(w’ + ).
By property i)) and Lemma 7 below, one has
1BS7 = (8° + B)llh + Alles” = (@ + @)l < 4(1Bgolls + Al@gslh), (A.40)
and therefore || 337 — (8° + B)||1 < 4(|| 8|1 + Al|@]|1). Consequently, for any j € [p] one has

1835 = 871 < 1855 — (87 + Bl + 1851 < 155" = (8° + B)lIx + 15812
< 4(IBl + Al@l) + 181 < 501811 + All@ll)
< 5max{LA}([|Bll + @ll1) = 5 max{1, A}|7]x
5v2max{1,\}o\/p + n

< Smax{1, A}v/p + nf|7]]2 <
EECINTESETE

where we have used property ii)) in the last inequality. Now setting

_ 5v2max{1, \}o\/p + n
(53 (V/p/n — 1) + )12

one gets

1B -8 <7 (A.41)
for every j € [p]. If j € S, we have |B§E < 7, hence BA(T/\‘ff),j =0.If j € S°, assumption (A.13)
implies \B?| > 27, which together with (A.41) gives sign(ﬁa{f)’j) = sign(ﬁ?).

It remains to prove that properties i)) and ii)) hold with high probability. First, Lemma 1
in Nguyen and Tran (2013a), implies that with probability greater than 1 — ce¢™ the matrix
X satisfies the extended restricted eigenvalue property

< 3(lBsollr + Aflwroll1)

I (A.42)
1
SIXB+ Viwlly = (118115 + llwll3),

1Bzl + Allwzslla

with 2 = % Property (A.42) clearly implies i)). Finally, Lemma 8 below proves
that ii)) holds with probability at least 1 — 1.147" — 2¢=5(VP=V™? which concludes our
proof. O

Lemma 7. Assume that for some sets S° < [p] and T° < [n], and some constant p € (0,1),
the matriz X € R™*P satisfies

1Bsollr + Allwrolly < p(llBgolls + Allwzwoll1), (A.43)
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for every pair (8, w) € RP xR™ such that X f++/nw = 0. Then for every pair (3,0) e RP xR",
the solution (ﬁip,d)ip) to JP (A.7) with y = X + \/n@ satisfies

2(1+p)

I1B8F = Bl + MafF - @l < =

=Bl + Mzllr)-

Proof. This proof is a simple extension of the one of Theorem 4.14 in Foucart and Rauhut
(2013). Let us consider y = X3 + y/n@ for an arbitrary pair (8,@), and define 8’ := g3F — 3
and W' := @&F — @. Clearly X' + /nw’ = 0, so by (A.43),

1850 ll1 + Mlwgolls < (1855l + Mlwssll)- (A.44)

We also have

1Bl + All@lls = lIBsollx + [18gally + Alllozollr + [[@zwll1)

= 11880 = Bsoll1 + 1Bgalls + Al@370 — ol + @)
< 1880l + 1850l + 11Bgoll + AMll@xolln + lwfolls + llgslln),
and
1855111 + Ml < (1835l + 1Bgslls) + Al 5l + lozsly).

Adding the last two inequalities yields
~ ~ AJP ~
1Bgsll + Mlwigll + 18Il + Al@lls < 183" [l + 1850l + 21 Bl
JP
+ Allox" [l + llwroll + 2l @zsll),
and rearranging terms gives

185511 + Mlwisll < (1837 [l + All@s” 1) = (181 + All@lh)
+ (1Bs0ll1 + Allwollt) + 2([1Bgsllx + Allzsll)-

Using (A.44) and the fact that [|837||1 + A|&{P(l1 < ||8]l1 + A|@|l1 by minimality of the JP
solution, we get

1855111 + Allwslls < p(lBgll + Allwigll) + 2(1Bssll + Algsll),

hence

185l + AMlwFslh < ——(IIBgoll1 + All@zsll1)- (A.45)

I—p
Now inequality (A.44) also implies

181 + AMlw'lls = 1Bsolln + Mlwpollr + 185511 + Mlwsslh
< (L+0) 185l + Mlwslh)

and continuing (A.46) with (A.45) gives the desired inequality. O

(A.46)
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Lemma 8. Let X := [X /nl,]. Under assumptions (v)), (v)), (vi)) and (vii)),

V20
(=B (pfn =12 + 1)1

with probability at least 1 —1.147" — 2e~s(WP—V)?

IXT(XXT) ell2 <

Proof. We have

o~ o~ -~ 2 112
IRTERT) e = T RRT) e el _lzelz
)\min(XXT) Amin(XXT)

Since H%EH% ~ X2, it is upper bounded by 2n with probability larger than 1 — 1.14™" (a
corollary of Lemma 1 in Laurent and Massart (2000)). So

2

P <|17H2 < m) 1-1.147" (A.47)
Umin( )

Let us now bound O'min(X). One has

02 (X) = Mnin(XXT) = Anin(XXT + nl,) = 02, (X) + n. (A.48)

min

iid

One can write X = GEY2 where G € R"*? with Gi; ~ N(0,1), thus

Tamin(X) = 0min(G)omin(2Y?) = oumin(G)V Amin(X)- (A.49)

~—

,eq. (2.3)) that

~(Vp/n—1)

with probability at least 1 — 2¢~s(VP—V)? Together with (A.48) and (A.49) this gives

Now it is known (see Rudelson and Vershynin (2010

w\%

Umin( ) (\f \/7)

- i 1/2 )
P (%in(X) > <Mﬁ“(2)(\/z%— 1)? + n> ) >1— 2e 5PV’

With (A.47), this implies

P (] < V20 114 2 SWVAE
(oS (y/pfn = 1)+ 1)1/2
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A.8 Variables in the Traumabase® dataset

The variables of the Traumabase dataset are:

e Time.amb: Time spent in the ambulance, i.e., transportation time from accident site
to hospital, in minutes.

e Lactate: The conjugate base of lactic acid.

e Delta.Hemo: The difference between the homoglobin on arrival at hospital and that in
the ambulance.

e RB(C: A binary index which indicates whether the transfusion of Red Blood Cells
Concentrates is performed.

e Sl.amb: Shock index measured on ambulance.

e DBP.min: Minimum value of measured diastolic blood pressure in the ambulance.
e SBP.min: Minimum value of measured systolic blood pressure in the ambulance.
e HR.mazx: Maximum value of measured heart rate in the ambulance.

e VE: A volume expander is a type of intravenous therapy that has the function of
providing volume for the circulatory system.

e MBP.amb: Mean arterial pressure measured in the ambulance.
e Temp: Patient’s body temperature.

e SI: Shock index SI = HR/SBP indicates level of occult shock based on heart rate
and systolic blood pressure on arrival at hospital.

e MBP: Mean arterial pressure M BP = (2DBP + SPB)/3 is an average blood pressure
in an individual during a single cardiac cycle.

e HR: Heart rate measured on arrival of hospital.

o Age: Age.
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Appendix A. Robust Lasso-Zero A.8. Variables in the Traumabase® dataset
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Figure A.1: PSR and s-TPR with an s-oracle tuning, for sparsity levels , s = 3 and s = 10
(subplots columns), proportions of missing values 5% or 20% (subplots rows), and two missing
data mechanisms (MCAR vs MNAR).
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Figure A.2: PSR with automatic tuning, for sparsity levels s = 3 and s = 10 (subplots
columns), proportions of missing values 5% or 20% (subplots rows), and two missing data
mechanisms (MCAR vs MNAR).
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A.8. Variables in the Tmumabase@ dataset
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Figure A.3: s-FDR and s-TPR with automatic tuning, for sparsity levels s = 3 and s = 10
(subplots columns), proportions of missing values 5% or 20% (subplots rows), and two missing

data mechanisms (MCAR vs MNAR).
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Figure A.4: Percentage of missing values in the Traumbase dataset.
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Appendix of Chapter 2

B.1 The FISTA algorithm

We first present the proximal gradient method. The following optimisation problem is
considered:

© € argming h1(0) + ha(0),
where hi is a convex function, hy a differentiable and convex function and L the gradient
Lipschitz of hs.

Algorithm 7 Proximal gradient method

Step 0: @(O)Athe null matrices. R A
Step ¢ + 1: O+ — prox/\(l/L)hl(@(t) — (1/L)Vhy(6M))

The main trick of the FISTA algorithm is to add a momentum term to the proximal
gradient method, in order to yield smoother trajectory towards the convergence point. In
addition, the proximal operator is performed on a specific linear combination of the previous
two iterates, rather than on the previous iterate only.

Algorithm 8 FISTA (accelerated proximal gradient method)

Step 0: ko = 0.1, 6 and = the null matrices.

Step t + 1: )
2
Kl = ”7@4'%
Dy = O+1) 4 L—l(@(ﬂrl) _ @(t))

Kk+1

In our specific model, to solve (2.2), h1(0) = ||©]. and h2(0) = QO (0 — Y)|%. Let us
precise that:

ohy(O©)
20,

= Vo, h2(0) = Q4 (055 — Yy) .
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Therefore,
Vhy(0) =20 (0 -Y)

and L is equal to 1.

B.2 softImpute

We start by describing softImpute.

Algorithm 9 softImpute

Step 0: é(O)Athe null matrix. R
Step ¢ + 1: O+ = prox, |, (QOY + (1 -Q)© o)

The proximal operator of the nuclear norm of a matrix X consists in a soft-thresholding of
its singular values: we perform the SVD of X and we obtain the matrices U, V and D. Then

proxy| |, (X) = UD,\V.
D, is the diagonal matrix such that for all 7,
D)\J'i = max((oi — )\), 0)

, where the (0y;)’s are the singular values of X.

B.2.1 Equivalence between softImpute and the proximal gradient method

By using the same functions h; and ho as above, one has:

ol = prOXA(l/L)hl(@ — (1/L)Vha(0"))
= prox, |, (0" — Qo (O -Y))
= prOXAH.H*<Q ® Y + (1 - Q) ® é(t)),

so that softImpute and the proximal gradient method are similar.

B.2.2 Equivalence between the EM algorithm and iterative SVD in the
MAR case

We prove here that in the MAR setting, softImpute is similar to the EM algorithm. Let us
recall that in the MAR setting the model of the joint distribution is not needed but only the
one of the data distribution, so that the E-step is written as follows:

QO16™) = By [log(p(©:9))|Yobs; © = e“’}

n 2
o — ZZE[(yU_ lj) |®A1](t)

1=1j5=1

)
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by using (2.3) and the independance of Y;;, Vi,5). Then, by splitting into the observed and the missing

elements,
n

Q(O16W)x — Y Z} [(yw_@'f)z|6;j“>} 2 Z_ (y]_UQJ)Z

i=1j,Q

Therefore,

OIS i — 05\’
Q(816")x — Z Y, Elyl; —20iyi +0510i 17 = ] (%7]>
Q

. o
1=17,8,;;=0 i=17,Q;;=1

n L o\ 2
9|@(t) Z Z (02 + eAz'j(t>2 - 2®Aij<t)@ij + ®?J> B 2 <@)

i=13,Q;;=0 i=1j, Q;;=1

which implies Q|0 |QOY + (1 - Q) © 6" —0|%
The M-step is then written as follows:

O € argming [QOY + (1 — Q) ©0Y — 0|2 + A|6)].
The proximal gradient method is applied with
h1(©) = A|©|, and he(©) = [QOY + (1 —Q)© 6" — 0|32

Therefore, the EM algorithm in the MAR case is the same one as softImpute.

B.3 The EM algorithm in the MINAR case

For the sake of clarity, we present below the EM algorithm in the MNAR and low dimension
case.

Algorithm 10 The EM algorithm in the MNAR case
Step 0: 0 and (;AS(O)

Step t + 1:
for (i,75) € Qmis = {(l,k),l € [1,n] k€ [1 pl, ux = 0} do

draw zzlj, ce zgs L [yU]QW, FAONC) 0;; ] with the SIR algorithm.
end for

Compute Ot+1) by using softImpute or the FISTA algorithm with the imputed matrix

V (given by (B.1)).
Compute ¢(t+1 by using the function glm with a binomial link, which perform a logistic

regression of Jy U) on J.(Q), with the matrix JU) given above ((B.2)), for all j such that

Jie{l,...n}, Qw =0.

We already have given details for the stopping criterium.
We clarify the maximization step given by (2.8) and (2.9).
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B.3. The EM algorithm in the MNAR case

with:

N
R ) 1 &3 1 k
Oe argénlnz (N Z T.Q(Uz(j) _ @ij)Q) + O]«
i.j % k=1

€ argmin|V — ©||% + A|©|., where:
©

1 Ns (k)
N, kzlvll"'Nngl lp
V=
1 yNs (k) 1 vNs (k)
k=1YUn1 -+ N, Zuk=1Unp
gb”l eargmmZ Z - —;;Cy
Ns k=1

€ argmlnz Z Cs + sz¢1j( — $25)

¢ i At

Cs =log(1 + e_‘blj(”fj_@j))
Cy = log(1 — (1 + e~ #1502y -1)

N,
. 1 3 k 1
€ argmlnz (N 2 Z —UZ-(j)@ij + 2@%’) + AlO].
i:j 5 =

(B.1)

For all j € {1,...,p} such that 3i € {1,...,n}, ;; = 0, estimating the coefficients ¢,
and ¢2; remains to fit a generalized linear model with the binomial link function for the

matrix J@):

Qlj ’US)
Q; ol
JU) = : :
Qlj Uﬁvs)
: N,
an 7(Lj )
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B.3.1 SIR

In the Monte Carlo approximation, the distribution of interest is [yij|§2ij; $§t), @S)] By

using the Bayes rules:
p (yz‘j Q55 éEj’) = f(yi5)
op (yij§ @S)) p (Qij|?/z‘j§ ¢3§t)> =: g(yij)

(1)

Denoting the Gaussian density function of mean @i] and variance o2 by Po® 29 if o >
ij o

(2m)~1/2, the following condition holds:
Fis) = cg(yij) < P 52 (T)-
For M large, the SIR algorithm to simulate
z~ [yij!Qm‘; o, @S)]

is described as follows.

Algorithm 11 SIR

Draw: a sample z1,...,2y ~ N(@g), o?).
Compute the weights:
Po® j2(Tm)
17 ?
form=1,...,M.
Draw z from the original sample z1,...,z) with probability proportional to

w(z1),. .. ,w(za).

B.4 Details on the variables in Traumabase®

A description of the variables which are used in Section 2.5 is given. The indications given
in parentheses ph (pre-hospital) and h (hospital) mean that the measures have been taken
before the arrival at the hospital and at the hospital.

e SBP.ph, DBP.ph, HR.ph: systolic and diastolic arterial pressure and heart rate during
pre-hospital phase. (ph)

e HemoCue.init: prehospital capillary hemoglobin concentration. (ph)

o SpO2.min: peripheral oxygen saturation, measured by pulse oxymetry, to estimate
oxygen content in the blood. (ph)

186



Appendixz B. Appendiz of Chapter 2 B.4. Details on the variables in Tmumabase@

e (Cristalloid.volume: total amount of prehospital administered cristalloid fluid resuscita-
tion (volume expansion). (ph)

e Shock.index.ph: ratio of heart rate and systolic arterial pressure during pre-hospital
phase. (ph)

e Delta.shock.index: Difference of shock index between arrival at the hospital and arrival
on the scene. (h)

e Delta.hemoClue: Difference of hemoglobin level between arrival at the hospital and
arrival on the scene. (h)
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C.1 Proof of Proposition 9

Proposition 9. Under Assumptions A01. and A02., the parameters (a, X)) of the PPCA
model (3.1) and the mechanism parameters ¢ = (¢¢)seqi,. py are identifiable. Assuming that
the noise level o? is known, the parameter B is identifiable up to a row permutation.

For the sake of readability, we first present the proof of Proposition 9 in the case of the
toy example presented in Section 3.3.1 with p = 3 and » = 2. The proof in the general
setting follows.

C.1.1 Proof of Proposition 9 in the case of the toy example presented in
Section 3.3.1

Consider the setting of the toy example presented in Section 3.3.1 with p = 3 and r = 2.
The PPCA model in (3.1) reads

Y 2(3/1 Y, }/3)2(041 (%) 013)+(W1 Wz)B-l—e,
Y ~N(a,X), ¥ =B"B+ 0%

Y5 and Y3 are assumed to be observed and Y7 is self-masked MNAR, i.e.
P(Q1 = 1|Y1,Y2, Ya; 61) = P(Q = 1|Y1561) = Fi(¢) + diy1), (C.1)
where F is strictly monotone with a positive finite support and where ¢ = (¢, #1).

Proof. Assume that (Y,) and (Y’,’) have distributions respectively parameterized by
(o, 2, ¢1) and (o/, X, ¢}). Assume that Y and Y’ have the same observed distribution, i.e.

E(YMQI = 1;0&1,211,¢1) = E(}q/7Q/1 = 1;0/17 /11?¢,1) (CQ)
E(YVI,Y},Ql = l;alaajaz(lj)a¢1) = £(Y{>Yj7/79/1 = 1;a,1705972/(1j)7¢/1) JE€ {273}1 (Cg)
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X1 Xy
Yy X
identifiability holds, we need to show that (C.2) and (C.3) imply that @ = o/, ¥ = ¥/
and ¢1 = ¢}. Then, under a known noise level o2, we prove that B and B’ are equal up to a
row permutation.

As (Y2,Y3) and (Y3,Yy) are fully observed, the parameters of the distributions £(Y3),
L(Y3), L(Y3), L(Y]), L(Y2,Y3) and L(Y5,Y3) are identifiable. It trivially implies that ag = af,
222 = 2/22, a3 = Oéé, 233 = Eég and 223 = 2/23

where Y15 is the covariance matrix < ) In order to show that parameters

Identifiability of the MINAR variable variance. Equation (C.2) can be rewritten
in terms of density function as follows

=1y an, 21, 61) = fyron-a (01, 200, 01) Yy e R

Given the missing mechanism in (C.1) and that Y; ~ N (a1, X11), (Miao et al., 2016, Theorem
1 a)) ensures that X1 = X;.

Identifiability of the Mean and the MNAR mechanism parameter. Using
(C.2) and (C.3), the previous computations entail that

L(Y2[Y1, 0 = Lon, a2, 5(19), 61) = LS |Y], Q) = 10,05, 545, ¢1),
noting that

Iya,va,n=1(y1, Y25 1, 2, X129, 61)
fyii=1(y1; 01, 311, 1)

ng|Y1=y1,Q1=1(y2§ a, g, Z(12)3 ¢1) = v(ylv yQ) € RQ

One obtains

P(Q1 = 1|Y1 = y1, Y2 = y2; 01) fra|vi =y, (Y25 @1, 02, X(19))
P(y = 1|Y1 = y1; 61)
P = 1Y) = 41, Y5 = y2: 91 g yy=y, (y2: 01, 09, X))

= Vy s Y2 ER2
B = 1V1 = y1:0)) w1, 2)

Yet,
P(Qq = 1Y1 = y1, Y2 = yo; 1) = E[E[1q, 1|1 = y1, Y2 = 2, Y3 = y3;41]|Y1 = y1, Yo = 2]
=E[P(Q = 1Y = y;01)|Y1 = 1, Yo = 4]
=E[P(Q = 1|Y1 = y1;01)[Y1 = y1, Y2 = v
=P( = 1Y = y1; 1) (C.4)

by measurability. It implies for all y; € R and y3 € R

fYQ\YFyl (y2; a1, a2, 2(12)) = fY2/|Y1’:y1 (Y23 0/17 a’z, 2212))
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which leads to the equality of the conditional expectations and variances associated to the
above densities:

az + X180 (a1 —y1) = ae + S (@ — ) Yy eR
Yoo — £H51 = Tag — (305)251
It implies that

53 = () = |S12| = |2y (C.5)
Yo1 (o] — 1)

S po— = |1 —y1| = oy —wm|  VyeR (C.6)

Equation (C.6) implies that «; = o, since for y; = o, one has a1 — o) = 0.
Using (C.3), one has

P(Q = 1Y1 = y1, Y2 = y2;01) fivi,ve) (U1, Y25 @1, 2, X19))
=P(Q) = 1Y = 51, Y5 = yo; 1) fivryy (W1, y25 a1, 05, Sf1g)) - V(yi,92) € R?(C.7)

Using (C.4),

_1 _ _ w1 (Y17 Qa1
exp < 51— Y2 — ) (12) \ yp — g Py = 1Yi =yi;1) A [det(X(12))

exp <—; (11 —o1 Y2 — a2) (E/(u))_l <y1 —o

>> P2 = 1Y] = y1;61) det (X))
Y2 — ag

where det(X(12)) denotes the determinant of the matrix ¥;9).

With (C.5), one has $11592 — £2, = 11592 — (£),)2 and Y24 F02) _

det(3),))

It leads to ¥(y1,y2) € R?,

P(Q1 = 1Y1 = y151) _ 1

K- ,
P(Q) = 1|Y] = y1; 1)

with

exp (—m (g1 — @1)?S11 + (y2 — 02)* T2 — 2(y1 — o) (y2 — 042)212))

K := .
exp (‘WEM) ((y1 = a1)?Enn + (Y2 — @2)822 — 2(y1 — o) (y2 — 042)2/12)>

The quantity K is equal to one, because

(y2 — a2) ((y1 — 1)T12 — (y1 — ) X)) =0

using (C.6). Thus,
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P(Q = 11Y1 = y1; ¢1)

— — 0 1 _ A "1
P = 1Y =y d)) 1 Fi(¢) + d1y1) = F1((¢)1 + (¢)191) Yy e R

As F} is strictly monotone, it is an injective function. Thus,

A+l = (@) 0+ )y Vi eR = (=@ +(¢)i—pD)y =0 Vg eR

It implies ¢1 = ¢].

Identifiability of the Covariances of the MINAR variable. Equation (C.7) thus
leads to

fon vy W1,y a1, 2, 819)) = fovr vy (U1, 92304, 05, 5(19)  V(y1,2) € R?
One can conclude that 15 = ¥{,. The same reasoning may be done for the covariance

between Y7 and Y3.

Identifiability of the loading matrix. One wants to prove B = B’ up to row
permutation. One has
Y=Y o %0y, =Y — 0l
< B'B=(B)'B (C.8)

As BT B is a positive symetric matrix of rank 2, one has the following singular value

decomposition,
BTB = (B)'B =UDUT,

where U = (uq|uz|uz) € R**3 the orthogonal matrix of singular vector and

Vdir 00
D=| 0 +dy 0]eR®3
0 0 0

with di = do = 0. One can choose

Vidiui

B =
d2u2T

noting that a row permutation of B would not change the product BT B. Therefore, B = B’
up to a row permutation.
O
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C.1.2 Proof of Proposition 9 in the general case

We present the proof of Proposition 9 in the general case where d variables are self-masked
MNAR and p — d variables are MCAR.

Proof. Assume that (Y,) and (Y’, Q) have distributions respectively parameterized by
(,X,¢) and (o/,%',¢'). Assume that Y and Y’ have the same following observed
distributions

L(Y}, Q5 = Lo, %55, 05) = LIV}, Q) = 1,05, 50, ¢5)  Vje{l,...,p}, (C.9)

eV ER VR

LY, Y5, Q= 1, = 15045, ag, Xy, 65, Ok
= LY Y9 = 1,0 = L), of, S, 8, 0k)  Vi#ke(l,....p}, (C.10)

. . i X,
where 31y denotes the covariance matrix =77 =% ).
(7) Yk Xk

In order to show that parameters identifiability holds, we need to show that (C.9) and
(C.10) implies that a = o/, ¥ = ¥’ and ¢ = ¢'. Then, under a known noise level o2, we will
prove that B and B’ are equal up to row permutations.

In what follows, fy; or fy,y,) respectively denote the density function of Y;, and of
(Yj’ Yk)

In the following, we will use the following tip, for any [ € {1,...,p} and K < {1,...,p}\{l}
such that 0 < K] <p—1,

P(Q = 1Y, =y, Yk = yx; &) = E[E[1o,=1|Y; ¢i]|Y1 =y, Yic = yk]
=E[P( = 1Y = y; )Y = ui, Yk = yx]
Thus, using the mechanisms in A01.,
P&y = 1Y, = i, Y = yic; 1)

[ E[P(y = 1Y = yi;0) Y1 = i, Y = yk] if Y] is self-masked MNAR
| E[P(% = 1;00)[Y7 = w1, Yic = yx] if Y7 is MCAR

Thus,
P(Q =11Y; = y;;¢)  if Y] is self-masked MNAR
P(Q = 1;¢;) if ¥7 is MCAR

(C.11)
(C.12)

Py = 1Y, =y, Yk = yxs 1) = {

by measurability if Y] is self-masked MNAR and by independence if Y; is MCAR.

Identifiability of the parameters for the not-MNAR variables (Y}) jer
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Mechanism parameter, Mean and Variance of Y}, j € M. Equation (C.9) leads
to

P(Q; = 1Y) = yj: 65) fy; (W33 s Bjg) = P(Q = 1Y) = w3 ¢5) frr (g3 05, 55;) Yy €R.

Using (C.12), P(Q2; = 1) = P(Q; = 1|Y; = y;; ¢;) = Fj(¢;). This distribution is identifiable
since it pertains to a conditional distribution of the observed data. As Fj is strictly monotone,
it implies that
Fj(¢5) = Fj(¢)) <= ¢; = ¢}
As ¢; = qﬁ one obtains
Fvy (i3 0, %55) = fyi(yss 0, 5;) - Wy €R

which directly implies that o; = a and Xj;; = X, 4> since Y; and Yj’ are Gaussian variables.

Covariance between two not MNAR variables Y; and YV}, j # k € M. Equation
(C.10) gives that for all (y;,yx) € R?

P(Q; = 1,9 = 1|Y; = yj, Yi = Yk; &5, D) frv;,vi) (Y Yk s s X k)
and one has as well that

P(Q; = 1,9 = 1|Y; = y;, Yi = yx; 5, &) = P( = 1|Y; = y;; ;)P = 1Y% = yi; o),
using A02.. Likewise,

P(Q; = 1,9, = 1|Y] = y;, Yy = i3 &, 0),) = P( = 1Y} = y;5 05)P(, = 1|Y} = yi; d)-
Given that ¢; = ¢ and ¢y, = ¢, one obtains

P(Qj =1, % = 1|V = yj, Y = yx; &5, O) = P(U = 1,9 = 1Y} = y;, Yy = yr; 05, k)
Thus, Equation (C.13) leads to, for all (y;,yx) € R,

oy v Wi s 0 e, Bigy) = Fovrv (W5 U 0, 0, S )

and X, = Z’
Identifiability of the parameters for the MNAR variables.

Variance of Y;,,,m € M. Equation (C.9) gives that

f(Ym,Qm=1)(ym;amaEmma¢m) f(Y QL =1) (ymaa 2, magb'lrn) Vym e R.

m?

Given the self-masked missing mechanism in A01. and that Y,, ~ N(am, Zmm), (Miao
et al., 2016, Theorem 1 a)) ensures that X, = X/
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Mean and mechanism parameter of Y,,,m € M. Let j € M (a not MNAR
variable). One has

C L = YO, = Ll St (C.14)
using (C.9) and (C.10) and noting that
f(Yj,Qj=1)|Ym=ym,Qm=l(yj; g, O, E(]m)a ¢Ja qu)

55,9521, Ym0 =1) U5 Ym @, Oy By, D5 Om)
f(Ym,szl) (ym; Oty Ymms ¢m)

v(yj’ ym) € R2'
Equation (C.14) implies that ¥(y;, ym) € R?,

P(Qm = 1|Y; = yj, Yin = Ym; ¢m) fv; Yo =ym (Y55 05 ¥, (m))
P(Qm = 1|Ym = Ym; Pm)
PO = Y] = 5, Yo = ymi 6m) fy vy, =y (U35 @5 @y i)
P(Q), = 1Y}, = ym; )

P(Qj = 1|Yt7 =Yj, Ym = Ym, Qm = 1§¢j)

=P( = 1Y) = y;, Yy = ym, Uy, = 1;¢))

m

(C.15)
One can note that

P(Q; = 1Y) = yj, Y = Ym, U = 1;85) = P(Q; = 1]Y; = ;5 ¢;).
Indeed,

P(Q; =10 Q= 1Y, = 45, Yin = Ym; &, Om)
P(Q; = 1Y) = 45, Yo = Ym, Qm = 1, ¢5) = . P, = 1]Y; :Jyj,YJm = ym;¢m)j
_ Py = 1]Y) = y;56;)P(Qn = 1]V = Yo )
P(Qm = 1|Yj = yjaYm = ym§¢m)
= P(Q; = 1Y) = ;5 65),

using A02. in the second step. Likewise,

P(Y; = 1|Y] = y;, Yy, = Ym, Qp, = 1;¢)) = P(Q) = 1|Y] = y;; 6)).

Given that ¢; = ¢/,

P(Qj = 1’}/] = yjaym = ymaﬁm = 1§¢j) = P(Qg = 1‘Yj/ = yj,Y/ = ymaQIm = 1;¢/)

m

Thus, Equation (C.15) leads to

P(Qm = 1‘1/] = ijym = ym;gbm)fYHYm:ym(yj;ajaama E(jm))
P(Qm = 1|Ym = yma¢m)
P, = 1Y] =4, Yo, = Umi 00) Sy v, =y (U35 @G Oy X))

V(y; R?.
B2, = 117, = i ) (Wistim) €
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AsP(Qp = 1|Y; = yj, Yin = Ym; &m) = P(Qn = 1|Y5, = Ym; ¢m) by using (C.11), one obtains
1Y Y=y (Y35 Qs Qi D)) = Fyrjyn =y (Y55 @5 Qs Xiiy) Y(yj, ym) € R?,
i (3m)

which leads to the equality of the conditional expectation and variance, as follows:

@t + Snj S (Cm — Ym) = o + z;nj(z;nm)—l(% — Ym) Y(yj,ym) € R
2 Eiljzmin = 2/ (E;’n])z(zznm)il
As aj = af and By = 7,0,
Soi = (Cri)? = [Songl = S04 (C.16)

Y _ (2 — Ym)

2;nj (m — Ym)
Equation (C.17) implies that a,, = o/, since for y,, = a,, one has o, — o,
In addition, using (C.10), one has for all (y;, ym) € R?,

and |am - ym| = ‘O‘;n - ym‘ Vym € R (C-17)

=0.

P(Q] = 179 - 1|Y - ij ym; ¢]7¢m)f Ym)<yj7ym;aj7am7 E(]m))
=P(Q;=1,9, = 1|Y’ = Yi» Yo = Ym3 05> ) fv2 ) Wis Ymi 0, 0y Bjiy) - (C.18)

One can note that

P(Q] = 179 - 1|Y - yj? yma¢j7¢m)
= P(Qj = 1;¢j>P(Qm = l‘Ym = ym;¢m)7
using A02. and the tips given in (C.11) and (C.12). The same equation holds for
(Y], Y, Q% Q) with the parameters (¢7,¢,). Using ¢; = ¢, Equation (C.18) leads

J) m?
to

P, = 1Y, = ymi 60) fovr v Wi Yms @, 0, D)) V(Y5 9m) € B2 (C.19)

It implies that, ¥(y;, ym) € R?,

_1 P m — E_ Yj — @y
exp ( 2 (yj a; Y ) (gm) (ym — Qm P(Qm _ 1|Ym — ym;cbm) _ det(Z(Jm))

)-1 ( yi — )) PR, = 1Y = ym; Om) det(2;,,))

Ym — Qi

exp (*% (yj - 0‘;’ Ym — alm) (E/(jm)

where det(X;,,)) denotes the determinant of the covariance matrix ¥ ;).

With 3;; = Zﬂ, Ymm = 20, and Equation (C.16), one has

) A det(E(jm))
EjiEmm — X = X Xm — (Xiy5) = =1

det (X,
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/
mm?

Besides, using a; = o}, ¥j; = ¥, and Xy = X one obtains that for all (y;, ym) € R?,

) P(Qm = HYm = ym7¢m) _
P, = 1Y), = ym; O1)

with

Ko exp <_W<]m>) ((yJ - O‘j)2zjj + (Ym — am)zzmm —2(yj — @) (ym — am>2mj)>

exp (_m ((yj - O‘j)zxjj + (Ym — am)?Zm — 2(yj — ) (Ym — Oéin)zgnj)
The quantity K is equal to one, because
(15 — ) (Ym — Q) Bmj — (Ym — @) Er5) =0
using (C.17). Thus, for all y,, € R,
P(Qm = I‘Ym = Ym; (bm)
P, = 1Y, = ym; &7,)
As F is strictly monotone, it is an injective function. Thus,
O+ Omm = (@) + (@ )mtm = () = O0) + (@) — Sm)ym =0 ¥y €R
It implies that ¢y, = ¢/,.

=1 < Fp(d% + hum) = Fu((8)2 + (&) ym)-

Covariance between Y, and Y, with j € M,m e M. Using (C.19) and ¢y, = ¢/,,,
one has

f(Y]-,Ym)(yja Yms O, Amy, Z(]m)) = f(YJ/,Y/,J (y]7 Ym; Oé;-, O‘;na Z/(jm)) v(yja ym) € RQ

One can conclude that 3,,; = E;nj.

Covariance between Y; and Y,, with ¢ # m € M. Using (C.10), one has for all
(Yo, Ym) € R27
P(QZ = 1) Qm = ]-D/] = y])Ym = Ym; QSZ) ¢m)f(Yg,Ym)(yf7yma Qygy O, E(fm))
= P(Qé = 17 Q;n = 1‘1/6/ = yZ,Yn/@ = Ym; Qsza ¢;n)f(YZ/,Y7;L)(y57 Yms a/€7 a;na E/(Zm)) (020)

One can note that
P(Qp =1, = 1Y = Yo, Yin = Ym; be, Om)
=P = 1|Ye = yo; 00)P(QUn = 1Yim = Yim; dm),
using A02. and the tip given in (C.11). The same equation holds for (Y/,Y,,,, €, Q)

¢ tmo

with the parameters (¢}, ¢,,). Yet ¢, = ¢, and ¢y, = ¢/,, which gives, for all (y;, ym) € R?,
P(Q =1, = 1Yo = Yo, Yin = Ymi G0 Om) = P(Q = 1, = 1Y) = 4o, Yo, = Yms b, 67,)-

Equation (C.20) leads to
f(YZ,Ym) (W, Ym; Qs O,y E(fm)) = f(}/Z7Y7;‘L) (y& Ym; Oé%, O[;nv E,((m)) v(y€7 ym) € R27
which implies that ¥, = 3

m*
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Identifiability of the loading matrix. One wants to prove that B = B’ up to a row
permutation. One has

Y=Y =% 0%, =Y — 0?Ixp

«— BB = (BB (C.21)
As BT B is a positive symetric matrix of rank r, its singular value decomposition reads
BB = (BB =UDUT,

where U = (u1]. .. |up) € RP*P is an orthogonal matrix containing the singular vectors and

D= vy e RP*P

with dq1 = -+ = d, = 0. One can choose

Vidiuf

NCE

A row permutation of B does not change the product BT B. Therefore, B = B’ up to a row
permutation.

O

C.2 Proof for Section 3.3

C.2.1 Proof of Lemma 1

Lemma 1. Under the PPCA model (3.1) and Assumption A1., choose j € J. Denote
B~1 e R™" the inverse of (B.m (B'j/)jlejﬂ,). One has

Y =Bjnmag 00+ O, Bisma,i1Ys + Bismg imYm + ¢
Jj'ed—;
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with:
-1 .

Bioma, 1= ), BB Vi'e T

ke{m}uJ_;

L —1

Biomg = 2 BBk

ke{fm}uJ_;
Bim.gio) =105 = > Bim. g ity = Bjm g imilom

Jj'ed—;
Z jom, T [11€5" — Bjom,g_;[m]€m t €
Jj'ed-;

Proof. Starting from the PPCA model written in (3.1) and recalled here
Y=1la+WB+e€

and the matrix B € R"*P being of full rank r, solving this linear system is the same as
solving the following reduced system

(Ym (Yj’)j’ej_j) = 1OZ|T + (Wl . Wr) B‘f,. + €,

where By, € R"*" denotes the reduced matrix (B, (B.j/)jegs_,) of B. Similarly, o, € R”

and €|, € R"*" denote the reduced matrices of o and e. With a slight abuse of notation, B!

denotes the inverse of the reduced matrix (B.m (Bj1)je j_j) which exists using A1l..
Then, one can derive that

Wi oo Wa) = ((Ym (Yj)jes ;) — 1oy —¢,) B~
The expression of Y ; as a function of the latent variables is

Y;=1a; + (W1 W.T) Bj +¢;
= 1la; + ((Ym (Yj/)jlejij) - 10&|r — 6‘r) B_lBj. + €.,

Yi= ) 2. Bu'B |Ye
ZE{m}UJ_j kE{m}Uj_j

— Z Z B./'Bji | (Lag + €4) + € + 1a;.
te{fmyuJ_; \ke{m}uJ_;

which leads to the desired solution.
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C.2.2 Proof of Proposition 11

Proposition 11 (Mean estimator). Consider the PPCA model (3.1). Under Assumptions
A1l. and A2., an estimator of the mean of a MNAR wvariable Y,,, for m € M, can be
constructed as follows: choose j € J, and compute

) =B g0~ Sged, B g0

O 1= )

C
BS o
with the (Bjﬁmyjij [k]) s estimators of the coefficients given in Definition 10 and assuming

that the coefficient B¢ [m] estimated by B¢ [m] is non zero.

j_)mvjfj ]_)mvjfj m
Under the additional Assumptions A8. and A4., this estimator is consistent.

Proof. The main goal is to obtain a formula for a,,, i.e.

BC_)m Z -/ Bc_)m (6%
am — J J [ ] J Ej_ J \7 [ ] J , (022)

Bjﬁmzjfj [m]

from which an estimator can be deduced. The idea is to express a; from o, and (a;)jes ;.
Note that E[Y ;] = E[E[Y]\(Yk)kem]] Assumption A2. leads to

E[Y;](Yk) E[Y,;[(Yk) Qm =1].

kem] = kem’
Then, by Definition 10 which gives (Y ;)q.,,=1,
E[Yj|(Yk)kEm7Q-m =1]
=E|Bjamg ot D) oo, )Y CC'(Yk)kem]

ke{m}uJ_;

= B;‘-»m,],j[o] + Z ‘76'—>m,J,j [k:]Yk +E [CC'(Y’f)kem]
ke{m}uJ_;

Thus, by taking the mean and given that E[e ;] = 0,Vk € {m} U J_;, one has

aj =Bj_,, T-jl0) T Z om0 T Bjc'ﬁmvjfj[m]am’
j'ed_;
implying Equation (C.22), provided that B;_)m Toim] 0.
From this formula for the mean a,,, one define its estimator é,, as in (3.9). It is trivially
consistent as the linear combination of consistent quantities under A3. and A4. O

C.2.3 Proof of Proposition 12

Proposition 12 (Variance and covariances estimators). Consider the PPCA model (3.1).
Under Assumptions A1. and A2., an estimator of the variance of a MNAR variable Y, for
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m e M and its covariances with the pivot variables, can be constructed as follows: choose
j € J and compute

—~

(V) Cov(Yom, (Vihies)) = (L)',

-1

assuming that o tends to zero and the inverse of the matrix M; estimated by (]\/4\]) erists,

with
EAR € ERT

50 9 5e 5c T
J/\Zj eR { (Bj_)m’j*j [m]) 0 2Bj4’mvj*j [m] (ng’mﬂY*j [\7*]]>
eR’ { _(B’i”m,J—k[m])kEJ (Mk)kej

Let us precise that ]\/Z] e ROTDX+D " One has (BAiﬁm Jik[m])kej =

One details M* for k = j1 and the same definition is valid for all k€ J.

M= (1B Gl - B b)) R

Jl_)mvj—jl ]1_’777/7;7—]'1

e R

A

_ (Var(Y;) — Q° — (BJC’—Wn,ij [ij])Tvar(Yj*j)B;*mej [T-;] }e R

I (((B,’;Hm’lk)T (1 am (de)éej_k)T - dk)dM> her }G R"
Q° = (Var(v,)|@m = 1)
— (GO )y ¥ V(Y ) ™ Cov (Vi) ¥) T2 = 1)

Under the additional Assumptions A3. and A4., the estimators for the variance of Y.,
and its covariances with the pivot variables given in (3.11) are consistent.

Proof. As for the mean, to derive some estimator of the variance and the covariances, we
want to obtain a formula as

M; (Var(Yom) Cov(Yom, (Yiier)' = (B — O(c?)) | (C.23)
with
GAR € R’"
(BC )2 c c T
%:em om0 2 (B )
eR" { _(B;ﬁmﬂ—k[m])kEJ (Mk)kej
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c
J1i—>m,J—j, [m]

Let us precise that M; € RCFD*T+1 One has (Bl 7y [ hed =

C
jr_’m7\7—jr [m]

One details M* for k = j1 and the same definition is valid for all k € J.
M — (1 B¢ o] o B ) eR"

1—m,J—j J1—>m,J—j, [ir]

e R

N

(Var(Y;) = Q° — (B5_, 1y ) Var(¥z )B, o o0 er

P = («BLmJ,R)T (1 E[Y] (E[yj])ew_k)T _ E[Y.k])E[Y,m]) }E R

keTJ

eR

o Ovar(az) }GR
O(07) = — (0cov,5(0%)) e 7 }

with 0var(0?) and ocoy x(0?) detailed in (C.29) and (C.32) respectively.

Q° = (Var(Y,j)|Q.m = 1)
— (Cov(Y )iy YiIVar((Yi)ep) ™ Cov (V) e Vi) T = 1) . (C:24)

The strategy is to prove each equality of the linear system in (C.23).

Deriving an equation for the variance. The idea is first to express Var(Y;) from
Var(Y), (Var(Y;))jes; and (Cov(Yg, Ye))rretefmjog ;- The law of total variance reads
as

Var(Y;) = E[Var(Y;|Z)] + Var(E[Y|Z]), (C.25)

with Z = (Y-k)ke@'
For the first term in (C.25), using Assumption A2., one has

Vil (Qm=1I[Z

which leads to
Var(Y,;|Z) = Var(Y;|Z,Q.,, = 1).

The conditional variance for a Gaussian vector gives

Var(Y,|Z) = Var(Y;) — Cov(Z,Y,;)Var(Z) *Cov(Z,Y;)T,
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implying that
Var(Y,|Z, Q. = 1) = (Var(Y,;) — Cov(Z,Y;)Var(Z) ' Cov(Z,Y ;)" |, = 1)
and then, as deterministic quantity,
E[Var(Y,;|Z)] = (Var(Y,;) — Cov(Z,Y;)Var(Z) ' Cov(Z,Y ;)" |, = 1).
One has

Cov(Z,Y )Var(Z) ' Cov(Z,Y;)" =

Cov (Ve Yo)Var((Y)epsy) " Cov((Y) peg Y)”
leading to
E[Var(Y,12)] - @, (C.26)
where Q¢ is defined in (C.24).
For the second term of (C.25), remark that A2. implies that
Var(E[Y;|Z]) = Var(E[Y;|Z,Qm = 1]),
and
Var(B[Y;|Z,Qm = 1)) = Var | E | B, 7 g+ 2 B wYe+C2 ] |,
ke{m}uJ_;
i.e.
Var(E[Y;|Z,Q.,, =1])
=Var| > Bi.gpaYx— X Biamg wBleslZ]+ B 5 o) +Elej]
ke{m}uJ_; ke{m}uJ_;

In the variance, the first term is obtained using that the variables (Yi)iefm}o g, are
Z—measurable. The two last terms use that B]C._)m 74[0] is a constant and € ; is independent
J—j

of Z. To calculate the second term, involving E[e|Z], one first shows that the vector

T. .
((Y.k)ke{m}uj,j (G.k)ke{m}uj,j) is Gaussian. Indeed,
° (Y.k)ke{m}uj,j is a Gaussian vector, using the model (3.1).

® (€k)kefmu 7., 1s a Gaussian vector, because its components are independent Gaussian
variables.

o for k # (e {m}u J_j, (WBk, e_g)T is a Gaussian vector, because Y L €.

o for k € {m} u J_j, (Yk e,k)T is a Gaussian vector, given that Y is a linear

combination of (WBk. e.k)T which is Gaussian, as W B}, and € are independent
Gaussian variables.
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Thus,

E[e x|Z] = E[e] + Cov(e, Z)Var(Z)~1(Z — E[Z])
= Cov(ey, Yi)(Var(2) ™) (Z — E[Z2]),

using Cov(e,Y;) = 0, for k # I. Tz = Var(Z)~! denotes the inverse of the covariance
matrix of Z and (I'z). is its k-th row. It leads to

Ele 2] = 0*(T2)x.(Z — E[2]). (C.27)
given that Cov(e,Y ) = Cov(eg, WBy. + €x) = Var(e).
Therefore,
Var(B[Y 12, Qm =11 = >, (Bin g ,pg) Var(Ya)
ke{fm}uJ_;
+ > 285, 7 11185 m. 7 510 COV(Yk, Yi) + 0var(0%),  (C.28)
(k<f)e{m}uT_;
where

owr(0®) = =20 31 Big pBimaitn 2 (T2)eCov(Vi,Ye)
(k,0)e{myoT_; re{miud.

+ 0-4 Z (B]Hmj [k‘])2 (

(T2)zVar(Ye) — 2(T2)ke(T 2 ) ke Cov(Ye, Yw))
ke{m}uJ_;

(<t Ye{m}uJ_;

— 20" > Bj .7 ,11Bi—m, 7,10 > ('2) ke (L z) e Cov (Y, Yor)  (C.29)
(k<t)e{m}uJ_; (k' ee{m}ouT_;

Combining (C.26) with (C.28), one get the following expression for the first line of the linear
system

(B fm) 2 Var(Ym) + 35 285 7 (5085 g g COV (Y7, Yom)
J'edg—;

= Var(Y;) = Q° = (BS_,, 7 17.1) Var(Ys )Bi,. 7 7 ] — ovar(0?) (C.30)

Deriving equations for the covariances. Let k be an element of 7, our objective is
to express Cov(Y,,, Y) from Var(Yn), am, (a)kes and (Cov(Yin, Yi))kefmiog-

Cov(Yom, Vi) = E[Y Y i] = E[Y ] E[Vi]
= E[E[Y.mY,|Z]] — E[Y.n]E[Yk]
= E[YnE[Yx|Z]] — E[Y.n]E[Y ], (C.31)

with Z = (V) g7
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For the first term in (C.31), one has

E[YE[Yx|Z]] LE[Y B[] Z, Q. = 1]]

(D) c C c
=E [Y.m (Bkﬂm,m[o] ) BimagYet E[Ckz])]

Le{m}uJ_k
(424) c o
= Bk—»m,j,k[O]E[Ym] + Bkﬁm,J,k[m]E[Y?n]

+ Z Bzﬁm,J_k[Z]E[YmYE]+0Cov,k(02)
(Ej_k

with ¢ = =Yy Bim,g 11064 = Biosm, g m]€m T €k
Assumption A2. and Definition 10 are used for (i) and (ii) respectively. For (iii), using
(C.27), one has

E[Y.E[¢f|Z]] = E [Y.m ( 2 B 0o C2)e(Z - E[ZD)] :

Le{m}uT_

given that E[e ;| Z] = E[e k] = 0 by independence.
E[YmE[GZ]]
= —0’E [ > BiwggYm Y, T2)w(e E[Y.e'])} :

le{m}uJ_i U{myoued_i

In addition,

E[ Z B g i Ym 2 (FZ)M’(Y.K’E[Y.Z/])]

le{mpuJ_i ve{myuT_s

= Z Z (Fz)esziamJik[e] (Cov (Y, Yp) + E[Y L E[(Y.e —E[Y,])])
le{m}oJ_i 'e{m}uJ_j

B Z Z T2)ee By 1€V (Yom, Yier)

Le{m}uT_i le{m}uJ_x

It implies that, in (iii),

Ocov,k(UQ) = _02 Z Z (FZ)M’B;_,myjik[g] Cov (Ym7 Yf’) (032)
te{m}uJ_i Ve{m}tuJ_y

Equation (C.31) leads thus to
COV(Ym7 Yk) = Blf:—)m,j_k[O]E[Ym] + Blf:—n’mj_k[m] (Var(ym) + ]E[Ym]2)
+ D% Binn g 40 (Cov(Yan, Ye) + E[Yu]E[Y.e]) — E[Y.]E[YA] + 0covi(0?), (C.33)

leJ_y
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which can be rewritten as

Cov(Yim, Yi) — B/f;ﬁmj_k[m]var(y.m) - Z B]Cg—nnm’]_k[ﬂ]cov(ym’ Yy)
Eej_k

= ((Bi .7 )" (1 E[Yi0] (E[YK])KEJ_k)T — E[Yi])E[Y.n] + 0cov,k(0?), (C.34)

Combining Equations (C.30) and (C.34) forms the desired matrix system (C.23).
From these formulae for (Var(Y.,) Cov(Ym, (Yi)ke J))T, assuming that M is invertible

— _— T
and that o2 tends to zero, one get their estimators (Var(Ym) Cov(Ym, (Yi)ke J)> defined
in (3.10).
As for the consistency, &, is a consistent estimator for «,, by using Proposition 11. The
estimators in (3.10) are consistent, under Assumption A3. and A4.. O

C.2.4 Proof of Proposition 28

For deriving the covariance between a MNAR variable and a MNAR or not pivot variable,
we assume the following

A5. Yme M, Vle J_p, for all set H = J_; such that |H| = r —2, (B_m By (B_j/)jer)
is invertible,

A6. Vke J\M,Vje T, Y, L Q-k|(Y-€)ze@'

A7T. Yk (e T, k#1,Qp LQY

A8. Vje J,VYme M,Vle J_p,, for all set H = J_; such that |H| = r — 2, the complete-
case coefficients Bj‘—»m,é,’]—[[o] and B;_)m%mk], k # j,k e {m,l} U H can be consistently
estimated. (Here, note that the complete case is when Q,, =1 and Q, = 1.)

A9. For the variables neither MNAR nor pivot, their means (o). 7> variances
(Var(Y)) ez pm and covariances (Cov(Yy, Yi)) pezam can be consistently esti-
mated. The covariances between these variables and the pivot variables (Cov (Y, Yk)) jc 7 ke 7\
are also consistent.

Proposition 28 (Covariance between a MNAR variable and a MNAR or not pivot variable).
Consider the PPCA model (3.1). Under Assumptions A2., A5., A6. and A7., an estimator
of the covariance between a MNAR wvariable Y,,, for m € M, and a variable Y, for
e j\{m}, can be constructed as follows: choose j € J and r — 2 variable indexes in J_;
and compute:

— 1 — o se —
Cov(Ym,Ye) = =Var(Y;) =4 = Y, (B50mpm) Var(Ya)
K ke{m,L}OoH

k<K' ke{m L} OH k'eH
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assuming that o2 tends to zero and with K = QBJC.Hm ZH[m]BJC.Hm A and
@° = (Var(v)[Qm = 1,2, = 1)
- (COV((Y.k)keﬁ7 Y)\Var(Ya) i)~ Cov((Yi) ey Yo) T [m = 1, Qe = 1> ,

given that K estimated by K is non zero.
Under the additional Assumptions A3., A8. and A9.. this estimator given in (C.35) is
consistent.

Proof. Let ‘H be the set of the r — 2 variable indexes. One has ‘H < J_;. We use the same
strategy as the proof for Proposition 12 (paragraph for deriving an equation for the variance).
To derive a formula for Cov(Y,,,Y,) with m € M and £ € J_,,, the idea is to express
Var(Y;) from (Var(Y))rem.on and (Cov(Yie, Yir)) perem.eon-
The law of total variance reads as

Var(Y;) = E[Var(Y;]2)] + Var(E[Y,|Z]), (C.36)

with Z = (Vi) 177
For the first term in (C.36), one uses

YL Qo QelZ.

If Y,, and Y, are both MNAR variables, this conditional independance is obtained using
Assumption A2. and A7.. Otherwise, if Y, is not a MNAR variable, Assumption A6. and
AT. lead to the desired result. It implies

Var(Y;|Z) = Var(Y;[Z,Qm = 1,0, = 1).
The conditional variance for a Gaussian vector gives
Var(Y,|Z) = Var(Y;) — Cov(Z,Y,;)Var(Z) *Cov(Z,Y;)T,
implying that
Var(Y;|Z,Qm = 1,24 =1)
= (Var(Y,;) — Cov(Z,Y)Var(Z) " 'Cov(Z,Y ;) |Qum = 1,0, = 1)
and then, as deterministic quantity,
E[Var(Y,]2)] = ¢° (C.37)
with
q¢ = (Var(Y,j)‘Q_m =1,0,= 1)
— (CovY )iy Y Var( (Vi) )™ Cov (V) e V) T2 = 1,20 = 1)

206



Appendix C. Appendiz of Chapter 3 C.2. Proof for Section 3.3

For the second term of (C.25), remark that A2., A6. and A7. implies that
Var(E[Y;|Z]) = Var(E[Y;|Z, Q. = 1,0, = 1]),
and

Var(E[Y;|Z, Q. = 1,0, = 1])

ke{m}uH

i.e.

Var(E[Y;|Z,Qm = 1,0, = 1])

= Var Y Bk — Dy BimenmBlerlZ] + B ooy + Ele ]
ke{m, L} UH ke{m}uH

One uses the same reasoning as in the proof of Proposition 12 (paragraph for deriving an
equation for the variance) to get

Var(B[Y|Z, Qm = 1, Qe = 1) = >, (B pmu) Var(Yi)
ke{m} UH
D 2B e B CV (Y, Yir) + Ocovmiss(07), (C.38)
k<k'e{m}UH
where
Ocovmiss(Uz) = *202 Z B;?_,m7g7ﬂ[k]35_,m7g7y[k/] Z (FZ)k’Z’COV(Y.ka Y.Z’)
(k,k")e{m, L} uH t'e{fm L} OoH

+ot Y (B eum) > (Cz)iw Var(Yer) = 2(C2)iw (T z2)ke Cov (Y, Yor)
ke{m,}UH (k'<te{m L} uH

- 20" > Bj im0 14111 B5 . 1 [k] > (T'2)kkr (L z) ke Cov(Yign, Yor) - (C.39)

(k<k")e{m L} OH (k"0 e{m L} UH

Combining (C.36), (C.37) and (C.38), one get the following formula for Cov(Y,,,Y,),

2B}ttt B i) CoV (Yo Yoo) = Var(Y) =" = D5 (B goupg)”Var(Ya)
ke{m}UH
- Z 28]6'—>m,é,7-t[k] Bjﬁm,ﬁ,ﬂ[k']cov(y-kv Y /) — Ocovmiss (02)
k<k',ke{m L} UH k'eH

An estimator of Cov(Y,,,,Y,) is then derived as in (C.35), given that o2 tends to zero

and K =B &H[m]BJC._)m’&H[Z] is non zero.
We use the consistent estimators defined in Proposition 12 for estimating Var(Y.,,) and

Cov(Y m, Yi)ken. If Yy is also a MNAR variable, Proposition 12 is applied for estimating
Var(Y,) and Cov(Y,, Yi)ken. Otherwise, if Y, is not a MNAR variable, we use A9..

Eventually, A3. and AS8. lead to the consistency of C/c;/(Y.m, Yy). O
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C.2.5 Extension to more general mechanisms for the not MNAR variables

The results of Proposition 11, 12 and 28 can be extended to a more general setting than
the one presented in Section 3.2. The pivot variables may be assumed to be MCAR (or
observed). The variables which are neither MNAR nor pivot may be observed or satisfying

i.e. they are MCAR or MAR but their missing-data mechanisms may not depend on the
pivot variables.

The proofs are similar and not presented here for the sake of brevity.

Note that the main difference is that the complete case has to be extended. For instance,
for j € J and k € J_;, the coefficients standing respectively for the intercept and the effects
of Yj on (Y, (Yj)jes ;) in the complete case, i.e. when Q,, = 1,(; = 1)je7 are in this
general setting defined as follows

(Y]')|Q_"L:17(Qj=1)jej = ]—>m(7 + Z —>m] ]Y r+ B ﬁm,J,j[m]Ym + CC’
j'ed- j

Wlth CC = _Z]’/Ejfj B_]Hmj [ ]6 i B;Hmj [ ]em + 6]

C.3 Other numerical experiments

Robustness to noise. Considering the same setting as in Section 3.4.1 (n = 1000, p = 10,
r = 2 and seven self-masked MNAR variables), the methods are tried for different noise
levels 02 € {0.1,0.3,0.5,0.7,1}. The results are presented for one missing variable and for
all the other ones, the results are similar. In Figure C.1, Algorithm 1 is the only method
that does not give a biased estimate of the mean and the variance regardless of the noise
level. In Figure C.2, despite a larger bias in the estimation of the covariance between a
missing variable and a pivot one as the noise level increases, Algorithm 1 outperforms all the
other methods, regarding the estimation of the covariance between two missing variables.
Note that the formula for the estimate of the covariance between two missing variables
relies on the one for the estimate of the variance, but both differ from the one used for the
covarance estimation between a missing variable and a pivot one. As expected, in Figure
C.3, estimation deteriorates as the data gets noisier and then the loading matrix estimation
and the imputation error get closer to the results of mean imputation. In term of imputation
error, the proposed method yet remains competitive in regards of the approaches (ii) and
(iii). Overall, when the noise level increases, the exogeneity will be worse and that ignoring
it in practice can be made to the detriment of performance.
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Figure C.1: Mean estimation (left graphic) and variance estimation (right graphic) of one
missing variable for different values of the level of noise when r = 2, n = 1000, p = 10 and
seven variables are MNAR. True values to be estimated are indicated by red lines.
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Figure C.2: Covariance estimation beetween a missing variable and a pivot one (left graphic)
and two missing variables (right graphic) for different values of the level of noise when r = 2,
n = 1000, p = 10 and seven variables are MNAR. True values to be estimated are indicated
by red lines.
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Figure C.3: RV coeflicients for the loading matrix (left graphic) and imputation error (right
graphic) for different values of the level of noise when r = 2, n = 1000, p = 10 and seven
variables are MNAR.

Varying the percentage of missing values. Considering the same setting as in Section
3.4.1 (n = 1000, p = 10, r = 2, 0 = 0.1 and seven self-masked MNAR variables), the
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methods are tried for different percentages of missing values (10%, 30%, 50%). The results
are presented in Figure C.4. As expected, all the methods deteriorate with an increasing
percentage of missing values but our method is stable.

1 6 2.0-
* 454 -
O—dot ol a4 ¢ + 1.5-
_1. & ]
1 H 1.0 B MNAR
. 2. EMMAR
Y " 0.5 . B SoftMAR
. 3 N 8 Mean
o O . 00-= = =
0.1 0.35 05 0.1 0.35 0.5 0.1 0.35 0.5

Figure C.4: Mean estimation (left graphic), variance estimation (middle graphic) and
imputation error (right graphic) for different percentages of missing values when r = 2,
n = 1000, p = 10 and seven variables are MNAR.

Misspecification to the rank. The misspecification to the parameter r has been
evaluated: under a model generated with r = 3 latent variables (n = 1000, p = 20,
o = 0.8 and ten MNAR self-masked variables), the rank is either underestimated, well
estimated or overestimated by giving to Algorithm 1 the information that r = 2, r = 3 or
r = 4. Both estimation of the loading matrix and imputation error are shown in Figure C.5.
The results for an underestimated (r = 2) or overestimated (r = 4) rank are comparable
to the case where the accurate rank is considered instead (r = 3), showing a stability of
Algorithm 1 to rank misspecification.

0.60-
o $ ﬁ

0.56-
0.98- 7
0.96- . 0.48-

Figure C.5: RV coefficients for the loading matrix (left) and imputation error (right) when
r =3, n = 1000, p = 20 and ten variables are MNAR for different cases where the rank is
either underestimated, well estimated or overestimated.

210



Appendix C. Appendiz of Chapter 3 C.3. Other numerical experiments

o.ooﬁ ;£| . ==
o e Sl rwéégz 5, =11

Lo &L s L e & 5 .3 T e & L .8
\g AN T \g S P9 \¢ AN
STIFFET §I5589 SRR R

-1.00-

Figure C.6: Mean estimation (left), variance estimation (middle) of one missing variable
and imputation error (right) when r = 3, n = 1000, p = 20 and ten variables are MNAR as
in (C.41). True values are indicated in red lines.

General MNAR mechanism. We consider the setting n = 1000, p = 20, » = 3 and
o = 0.8. Here, missing values are introduced on ten variables (Y 1)xe[1:109) using a more
general MNAR mechanism (see (3.3)) than the self-masked one. In particular, the MNAR
mechanism we consider is defined as follows,

Vme [1:10],Vi € {1,...,n}, P(Qum = 1|Y;) = P(Qim = 1|Yim, Yik, Yie), (C.41)

where k and ¢ are indexes of MNAR variables randomly chosen such that k& # ¢ € [1 : 10]\{m}.
In Figure C.6, Algorithm 1 provides the best estimators of the mean and the variance (in
term of bias) and the smallest imputation error.

Higher dimension and variation of the rank. The performance of the different
methods for higher dimension is assessed. A data matrix of size n = 1000 and p = 50
is generated from two latent variables (r = 2) and with a noise level 0 = 1. Missing values
are introduced on twenty variables according to a self-masked MNAR, mechanism, leading to
20% of missing values in total. Without loss of generality, the results are presented for one
missing variable. Method (iv) has been discarded, as its computational time is too high for
this setting.

In Figure C.7, as for the estimated mean and variance, Methods (i), (ii) and (iii) suffer
from a large bias, while Algorithm 1 gives unbiased estimators. The same comment can be
done for the estimation of the covariance between two missing values in Figure C.8. As for
the covariance estimation between a missing variable and a pivot one Figure C.8, Algorithm
1 suffers from a variability, which can be due to the fact that in this higher dimension setting,
not all the possible combinations of pivot variables are considered. Indeed, instead of taking
the set of pivot variables of all the not MNAR variables i.e. J = M, we choose J < M
such that || = 10. For the mean, 270 combinations of the pivot variables are aggregated
over 870 possible combinations if J = M.

Despite this dispersed estimator of the covariance between a MNAR variable and a pivot
one, Algorithm 1 gives in Figure C.9 a high RV coefficient, by improving Methods (i), (iii)
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Figure C.7: Mean estimation (left) and variance estimation (right) of one missing variable
when r = 2, n = 1000, p = 50 and twenty variables are MNAR. True values to be estimated
are indicated by red lines.
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Figure C.8: Covariance estimation beetween two missing variable (left) and a missing
variable and a pivot one (right) when r = 2, n = 200, p = 10 and seven variables are MNAR.
True values to be estimated are indicated by red lines.
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Figure C.9: RV coefficients for the loading matrix (left) and imputation error (right) when
r =2, n = 1000, p = 50 and twenty variables are MNAR.
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and (ii). Concerning the imputation performance, Algorithm 1 strongly improves Methods
(ii) and (iii).

For the same dimension setting (n = 1000, p = 50) and the same noise level (o = 1),
we vary the rank to r = 5. Similarly as before, missing values are introduced on twenty
variables according to a self-masked MNAR mechanism, leading to 20% of missing values
in total. In Figure C.10, for the mean and the variable estimations, Algorithm 1 gives
unbiased estimators. In Figure C.11, the covariance between a missing variable and a pivot
one estimated by Algorithm 1 is biased but still less than the other methods. In addition,
the covariance between two missing variables is unbiased but suffers from a high variability.
Note that once again we have chosen J < M such that |J| = 10. For the mean, 1260
combinations of the pivot variables are aggregated over 712530 possible combinations if
J = M. In Figure C.12, despite such results for the covariance estimators, Algorithm 1 gives
a similar RV coefficient than Methods (ii) and (iii) but strongly improves all the methods in
term of imputation error.
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Figure C.10: Mean estimation (left) and variance estimation (right) of one missing variable
when r = 5, n = 1000, p = 50 and twenty variables are MNAR. True values to be estimated
are indicated by red lines.
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Figure C.11: Covariance estimation beetween two missing variable (left) and a missing
variable and a pivot one (right) when r = 5, n = 1000, p = 50 and twenty variables are
MNAR. True values to be estimated are indicated by red lines.
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Figure C.12: RV coefficients for the loading matrix (left) and imputation error (right) when
r =5, n = 1000, p = 50 and twenty variables are MNAR.

Efficiency of the aggregation approach in the selection of the pivot variables. As
described in Section 3.3.4, Algorithm 1 requires the selection of r pivot variables (considered
M(C)AR) on which the regressions will be performed. To reduce the error committed by the
selection pivot variables, we propose to select a bigger set of pivot variables (with a cardinal
superior to ) and the final estimator will be computed with the median of the estimators
over all possible combinations of r pivot variables (this is called the aggregation approach).
In Figure C.13, we consider the same setting as in Section 3.4.1 (n = 1000, p = 10, » = 2 and
seven self-masked MNAR variables) and we perform Algorithm 1 by using the aggregation
(MNARagg) method or not (MNARnoagg). By discarding outliers, this aggregation approach is
more robust than selecting only r pivot variables.
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Figure C.13: Mean (left) and variance (middle left) estimations of Y; and covariances
estimations of Cov(Y1,Y ) (between two missing variables) (middle right) and of Cov(Y 1, Ys)
(between one missing variable and one pivot variable) (right). True values are indicated in
red lines.

C.4 Computation time

Table C.1 gathers computation times of the different methods, for both settings considered
in Sections 3.4 and C.3.
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r=2,p=10,n = 1000 | 7 = 5,p = 50,1 = 1000
Method 35% MNAR values 20% MNAR values

in 7 variables in 20 variables
MNAR algebraic | 0,1 s 11 min 48 s (1260 aggregations)
Soft MAR 5,58 28 s
EMMAR 50,8 s 2 min 9 s
Param 5 h 15 min not evaluated

Table C.1: Computation time for simulations in Sections 3.4 and Appendix C.3. The process
time is obtained for a computer with a processor Intel Core i5 of 2,3 GHz.

C.5 Additional information on the Traumabase® dataset

C.5.1 Description of the variables

A description of the variables which are used in Section 3.4.2 is given. The indications given
in parentheses ph (pre-hospital) and h (hospital) mean that the measures have been taken
before the arrival at the hospital and at the hospital.

SBP.ph, DBP.ph, HR.ph: systolic and diastolic arterial pressure and heart rate during
pre-hospital phase. (ph)

HemoClue.init: prehospital capillary hemoglobin concentration. (ph)

SpO2.min: peripheral oxygen saturation, measured by pulse oxymetry, to estimate
oxygen content in the blood. (ph)

Cristalloid.volume: total amount of prehospital administered cristalloid fluid resuscita-
tion (volume expansion). (ph)

Shock.index.ph: ratio of heart rate and systolic arterial pressure during pre-hospital
phase. (ph)

Delta.shock.index: Difference of shock index between arrival at the hospital and arrival
on the scene. (h)

Delta.hemoClue: Difference of hemoglobin level between arrival at the hospital and
arrival on the scene. (h)

The percentage of missing values in each variable is given in Figure C.14.
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Figure C.14: Percentage of missing values in each variable for the TraumaBase data.

C.5.2 Supervised learning task

To predict the administration or not of the tranexomic acid (binary variable), we impute
explanatory variables before proceeding to the classification task. In Table C.2, Algorithm 1
gives the smallest prediction error.

MNAR 5.06%
EMMAR 5.82%
Soft MAR 5.45%
MNARparam | 5.39%
Mean 5.27%

Table C.2: Mean of prediction error over 10 repetitions.

C.6 Graphical approach

C.6.1 Preliminaries

Lemmas of Mohan et al. (2018) are used to construct some estimators of the mean, variance
and covariances for a MNAR variable based on a graphical approach.

Lemma 9 (Lemma 2 (Mohan et al., 2018)). Let us consider the m-graph G. The coefficient
of the linear regression of Yj on Yy, k # j, denoted as i rx; is recoverable (i.e. they are
consistent in the complete-case analysis) if Y; L QY k # j and one has

/Bjak,k;éj = 5;91{,1#3‘-
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Lemma 10 (Lemma 1). (Mohan et al., 2018)](Graphical approach for computing the
covariance) Let G be a m-graph with k unblocked paths p1,...,pr between two variables Y
and Y. Let Ay, be the ancestor of all nodes on path p;. Let the number of nodes on p; be
Ny, - One can derive that

np,—1

Cov(Y,,Ys) = ZVar pi) H a

where 1_[ AZ is the product of all causal parameters on path p;.

In addmon, let us recall the basic formula,

Cov(X,Y)

) (C.42)

BY—>X =

where Y and X are two variables of a linear model.

C.6.2 Estimation of the mean, variance and covariances of the MNAR
variables

The graphical approach to construct an estimator of «; is based on the transformation
illustrated in Figure 3.1 of the graphical model of PPCA as structural causal graphs, whose
context is introduced in (Pearl, 2003). This latter framework allows to directly apply the
results of Mohan et al. (2018) who consider the associated (linear) structural causal equations
under the exogeneity assumption with MNAR missing values for one variable.

For the sake of brevity, the results are presented for the toy example in Section 3.3.1
where p = 3, r = 2, Y1 is self-masked MNAR and the other variables are observed.

Then, one can associate to Figure 3.1 (bottom right graph) the structural equation model
detailled in the following lemma.

Lemma 11. Assuming E[e2|Y1,Y 3] =0, the structural equation model associated with the
bottom right graph in Figure 3.1 is

Yo = Bai3/0) + Bas131Ya + B 331Ys + €2, (C.43)

where Ba_,1 310, Ba—1,3[1] and PBa_13[3) are the intercept and the coefficients of the linear
regression of Yo on Y1 and Ys.

Using Equation (C.43) and Lemma 9, we apply the results of Mohan et al. (2018) to get
an estimator for the mean of the MNAR variable.

Proposition 29 (Mean estimator for the graphical approach). Under Equation (C.43),
assuming Al. and (5, 3] 7 0, one can construct an estimator of the mean a1 of the
MNAR variable Y1 as follows

ay = a2 — 55-»1,3[0] - 55—»1,3[3]6“3 (C.44)
5541,3[1]
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where 62H1 3[0) 52H1 301 and Bg 1,3[3] denote some estimators of B5_ | 4y 3[0] B5 130 301 and
B5_1 313 303] gwen in Lemma 11. This estimator is consistent under additional Assumptzon AY..

Proof. To derive some estimator of the mean, we want to obtain the following formula

_ Rc _ Rc
a2 ﬁ2_>1,3[0] 62_&,3[3]0‘3

(C.45)

a1 =

65—4,3[1]
Indeed, one has:

E[Y2] = E[E[Y2|Y, V3]
= E[E[Y2|Y1, Yg, Q.l = 1]] (by using A].)
= E[E[B5 1 3101 + Baray Y1 + Pros gz Ys + €2lYa, Yal]
= B3130) T Pomr BVl + 855 113 ElVa],

which leads to the desired Equation (C.45), provided that 55, 17 0. A natural estimator
fo a; is then given by (C.44). It is consistent given that all the quantities involved are
consistent, by using A4. (for the consistency of ¢y and é3) and Lemma 9 (for the consistency
of the coefficients B§ﬂ1,3[o]> 5561’3[1] and B§H1,3[3])' O

Remark 30 (Mean estimation: algebraic vs. graphical approach). In both approaches,
the PPCA model is translated into a linear model. However, both estimators in Equations
(3.9) and (C.44) theoretically differ. The exogeneity assumption and approximation is not
made at the same step. In the algebraic approach, the results are first derived without
using any approrimation. It gives linear models that do mot comply with the standard
exogeneity assumption Consequently, an approammatzon is done at the estimation step
since the parameters l’>’2_>1 3[0) 82_&3[ 1] and l’,‘>’2_)1 3[3] @re estimated with the standard linear
regression coefficients. In the graphical approach, an approrimation is made at the first step
when a structural equation model is associated with the graphical model by assuming the
exogeneity, i.e. E[e2|Y1,Y 3] = 0. In practice, for both approaches, the same coefficients are
naturally computed, i.e. BA]C-_)M = l”;’;._,kyz, which leads to the same computed estimators for
the mean of Y.

While only one simplified graphical model between Y, Y2 and Y3, displayed in the
bottom right graph of Figure 3.1, was required to construct an estimator of the mean of
Y, the variance and covariance estimations rely on Equation (C.43) and the following one
(associating to the bottom left graph of Figure 3.1),

Y3 = B31210) + B3o12o1)Ya + Bz 202 Y2 + €3, (C.46)

assuming E[e 3|Y 1, Y2] = 0 and where 83_,; 2j0], B3—1,2[1] and 85,1 o[2] are the intercept and
the coefficients of the linear regression of Y3 on Y; and Y.

Using Equations (C.43) and (C.46) and Lemmas 9, 10, one can derive some estimators
for the variance and the covariances of Y7.
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Proposition 31 (Variance and covariances formulae resulting from the graphical approach
when p = 3 and r = 2). Under the two equations (C.43) and (C.46), assuming A1. and also
B5_1 # 0, B§H173[1] # 0 and Var(Y3) # 0, one can construct an estimator of the variance of
the MNAR wvariable Y1 and its covariances as follows

_ Var(Y. 1 Cov(Ya,Y3) 4
Var(vy) = Yar¥s) WYl g ). (CaD
B51 P51 Var(Y3) ’
o~ 1 Cov(Ys,Y3) -, —
Cov(Y1,Ya) = VYY) g ) V), (O
B8 1a01] Var(Y2) ’
_ 1 Cov(Ys,Y o —
Cov(Y1,Ys3) 1= — ALE '3)—ﬂ%13[3] Var(Y3), (C.49)
B 3011 Var(Y3) ’

where Bg—»l,z[l]’ B?C’_)LQ[Q] and Bgﬂl are some estimators of 5:%172[1]; 55—»1,2[2] and B5_,
given in (C.46).
These estimators are consistent under additional Assumption Aj4..

Proof. To derive some estimators of the variance and covariances of the MNAR variable Y,
one want to obtain the following formulae:

Var(Y_g) 1 (COV(YQ, Yg) >

Var(Yy) = — - - G5, , C.50
( 1) ,83_,1 62_)1’3[1] V&r(Y?,) 2—1,3[3] ( )

1 COV(YQ,Y?)) )
Cov(Y1,Ys) = —B5_, Var(Y,), C.51
Y ¥2) CHRP < Var(vy) Do ) Var(ro) (C.51)

1 Cov(Ya,Y3) >
Cov(Y1,Y3) = - 65, Var(Ys3). C.52
YY) 55_4,3[1]( Var(Y3) Pt () (C.52)

Using Equation (C.42), one has
Cov(Y1,Y3) = Var(Y1)B3-1,
Cov(Y3,Y1) = Var(Y3)Bi-3,

SO

vty = s

Considering the graphical model in the bottom left graph of Figure 3.1,

Cov(Ya,Y3) = Bars1 311 P1-3Var(Ys) + fas 313 Var(Ys) (by Lemma 10)
1 Cov(Y2,Y3) )
= —3 = - —
Pis Ba—1.3[1] ( Var(Y3) Pt
1 Cov(Ys,Y3) )
= f1-3 = & ( - 65 C.53
' 52—473[1] Var(Y3) 2= L803] ( )
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where the last implication is given by Lemma 9 and Assumption Al., giving also

Bs—1 = P51,

which leads to Equation (C.50).
By (C.42), the covariances can be expressed in two different ways,

Cov(Y1,Ys) = fas1Var(Y ) and Cov(Y,Y3) = f3-1Var(Y;), (C.54)
Cov(Y1,Ys2) = B12Var(Yy) and Cov(Yy,Y3) = Bi1.3Var(Y3s). (C.55)

In (C.54), the coefficients 83,1 and B3_,1 can be estimated on the complete case using Lemma
9, but the variance of Y; has still to be taken care of. Instead of potentially propagate error
from (C.50), we propose to favor the expressions given in (C.55) to evaluate the covariances.

Focusing on (C.55), the coefficient 3;_,3 is given in (C.53) and S1_.2 can be obtained
using the same method, based on the reduced graphical model in the bottom right graph of
Figure 3.1 (by Assumption A1l.), so that

1 (COV(YQ, Y3)

Bg—»l,?[l]

Therefore, by plugging it in (C.55), Equations (C.51) and (C.52) are obtained.

The natural estimators for Var(Y;), Cov(Y1,Ys) and Cov(Y1,Y3) are then given by
(C.47), (C.48) and (C.49). They are consistent given that all the quantites involved are
consistent, by using A4. (for the consistency of \//E;'(YQ), \//E;'(Yg) and @(Yg, Y3)) and

~

Lemma 9 (for the consistency of 57, ,). O

Remark 32 (Var-covariance estimation: algebraic vs. graphical approach). As for the mean,
the exogeneity assumption is required in the last step of the algebraic approach to estimate
coefficients and in the first step of the graphical approach to obtain structural equation models.
However, contrary to the estimator suggested for the mean, the estimators in both graphical
and algebraic approaches here differ (compare (3.10) with (C.47), (C.48) and (C.49)). Indeed,
the algebraic approach is based on the use of conditionality, while the graphical one relies on
graphical results standing for the linear models when exogeneity holds.

C.7 PPCA with MAR data

The following proposition is an adaptation of our method to handle MAR data, called MAR
in Section 3.4.1, inspired by (Mohan et al., 2018, Theorems 1, 2, 3). In this case, the missing
variables are assumed to be MAR indexed by M. We assume the following:

A].MAR. (B.j’)j’EJ is invertible.

A2y jAR. Yme M, Y, L Qm|(Yk)kem

and B¢

A3MAR. Vm € M, the complete-case coefficients By 71 Tk

],k e J can be
consistently estimated.

0]
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A5MaR- Ve T, for all set H J-j such that [H| =r —1, (B.E (B.j’)j’e?-[) is invertible,
AbpAR. Yme M Ve T\M,VjeT, Y L Qil(Yi)cmmr

A8nMAR- Vm € M,V e {m}\J, for all set # < J such that |H| = r — 1, the complete-case

coefficients B¢ m—e[o] A0d B Mk k€ {¢} U H can be consistently estimated.

Proposition 33 (Expectation, variance and covariances formulae for a MAR variable when
p = 3 and r = 2). Consider the PPCA model (3.1). Under Assumptions Alpar. and
A2paR-, one can construct the estimators of the mean, the variance and the covariances
with a pivot variable for any MAR variable Y., m € M, as follows

— the mean of the missing variable

C
= B,,HJ + Z B,,HJ
jeJ

with J the pivot variables set,
— the variance of the missing variable

@(Y.) QMAR+Z ol )2\//3}(5/-9‘)
JjeJg

+2 > B ;B []COV(YJ,Y;C)
(j<k)eT

with

Qfiar = (Var m)|Qam )
(COV(( )je{m}’ )Var(( )Jem)_lﬁ((yj)jemu Ym)T‘Qm = 1> .

— the covariances between the missing variable and a pivot variable, for all £ € T,

COV(Ym, Yf) B [0 ]Oég + Bm—»j[ ](V&I’(YZ) + d?)

+ > B (Cov(Yy, Yy) + budu) — Guméy
keJ_,

m—J

Under Assumption A3pyar. and AJ., these estimators are consistent.

In addition, under Assumption AS5pyar., A6par. and A7., one can construct the
estimator of the covariance between a MAR wvariable Y, for m € M and any not pivot
variable as follows
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— the covariances between the missing variable and any not pivot variable, for all £ €
{m\JT, choose r — 1 variable indexes in J to form the set H U J such that |H| =1r—1

Cov (Y, Yy) = B mo e + Bfn—»é,?—l[ﬂ] (Var(Y) + a3)
+ B&J,ﬂ[k](®(¥é; Yi) + Gudy) — amdy
keH

Under the additional Assumptions A8prar. and A9. this estimator is consistent.

Proof. The proof follows exactly the same direction than in Proposition 11, 12 and 28. The
only difference is that the regressions used are not the same.

For the sake of clarity, consider the same toy example as in Section 3.3.1 where p = 3,7 = 2,
in which only one variable can be missing (at random), and fix M = {1} and J = {2, 3}. Note
that here the MAR mechanism leads to P(Q1 = 0]Y1,Y9,Y3) = P(Q2; = 0|Y,Y3).. The
goal is to estimate the mean of Y1, without specifying the distribution of the missing-data
mechanism and using only the observed data.

Assumption Alyjar. allows to obtain linear link between the MAR variable Y; and
the pivot variables (Y,Y3). In particular, one has

Y1 = B1oo3)0] + Bioes) Y2 + BioezpzYs + ¢,

with 819 3[0]; B1-2,3[2) and B1_,233] the intercept and coefficients standing for the effects
of Y1 on Y5 and Y3, and with

¢ =—Bi_o3p1€2 — Bioogp)es + €1

Assumption A2prjaR., t.e. Y1 L Q1|Ys, Y3, is required to obtain identifiable and
consistent parameters of the distribution of Y; given Y,Y3 in the complete-case when

Q1 =1, denoted as Bfﬂm[o]’ B;H2,3[2] and 5fa273[3],

(Y)jo,=1 = Bioagp0) + BioespYe + BlogspeYs + ¢

with
(“= =Bz — —Biggpes + e

(In the MNAR case, the regression of Y1 on (Y3,Y3) is prohibited, as A2par. does not
hold. That is why we used the regression of Y on Y; and Y3.);
Using again A2nfAR., one has

E [Y1|Y27 Y37 Q.l = 1] =K [/Bf_a,g[o] + ﬁfqz,g[g]y.2 + ﬁf_,gyg[g]YS‘Y% YB] + E[CC|Y27 Y3]7

and taking the expectation leads to

E[Y1] = B 210 + Bizs2 B [YVal + Bis s E Y],

given that E[e ] =0, Vk € {1,2,3}.
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One obtains
o1 = B9 310 T B12,32)02 T BT 31313

A natural estimator for oy is

&1 = B0 300) T Bioa3i21%2 + Bl 33%,

which is consistent using Assumption A3par. and A4.. ]
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Appendix of Chapter 4

D.1 Discussion on the paper of Ma and Needell (2018)

In this section, we make the theoretical issues unlocked in Ma and Needell (2018)
explicit.  For clarity, we directly refer to the lemmas and theorems as numbered
in the published version (http://www.global-sci.org/uploads/online_news/NMTMA/
201809051633-2442 . pdf), the numbering being slightly different than the arXiv version.
For readability, we translate their method and results with the notation used in the present
paper. In their paper, they consider the finite-sample setting, with at hand (D;., Xi;)lgign,
in view of minimizing the empirical risk.

As a preamble, let us remind that the contributions of the present paper go far beyond
correcting the approach in (Ma and Needell, 2018): we propose a different algorithm using
averaging, that converges faster and in a non-strongly convex regime, with a different proof
technique, requiring a more technical proof on the second order moment of the noise, and we
allow for heterogeneity in the missing data mechanism.

D.1.1 Hurdles to get unbiased gradients of the empirical risk

The stochastic gradients in Ma and Needell (2018) are not unbiased gradients of the empirical
risk (which makes their main result wrong). Indeed, their algorithm uses the debiased
direction (4.4) by sampling uniformly with replacement the (Xj)x’s.

For clarity, we highlight both why the result is not technically correct in their paper, and
why it is not intuitively possible to achieve the result they give.

Technically. The proof of the main Theorem 2.2 (Theorem 2.1 being a direct corollary),
corresponds to the classical proof in which one upper bounds the expectation of the mean-
squared distance from the iterate at iteration k + 1 to the optimal point conditionally to
the iterate at iteration k, or more precisely, conditionally to a o-algebra making this
iterate measurable. This is typically written

E [11Br+1 — B2 11°1F]
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where 53 is the minimizer of the empirical risk R, and fj is Fi-measurable.
The crux of the proof is then to use unbiased gradients conditionally to Fj: the
property needed is that

E [gixsr (Bi)|Fi] = VRA(Br).

In classical ERM (without missing value) it is done by sampling uniformly at iteration
k + 1 one observation indexed by ix41 ~ U[1;n], independently from fy.

In regression with missing data, one has to deal with another source of randomness, the
randomness of the mask D. In Ma and Needell (2018), Lemma A.1 states that for a random
i ~U[1;n] and a matrix row A;, for a random mask D associated to this row,

Ep[Eigi(8)] = VR, (B).

This lemma is valid. Unfortunately, its usage in the proof of Theorem 2.2 (page 18, line (ii)),
is not, as one does not have:

E[gik+1 (/Bk)|"rk] = VRH(/Bk)v
indeed,

e cither the sample iy, is chosen uniformly at random in [1;n] and D is not

independent from Sy.

Tkt

e or the sample 7 is not chosen uniformly in [1;n] (for example without replacement, as
we do) and then the gradient is not an unbiased gradient of R,, as the sampling is not
uniform anymore.

In other words, the proof would only be valid if the mask for the missing entries was
re-sampled each time the point is used, which is of course not realistic for a missing
data approach (that would mean that the data has in fact been collected without missing
entries).

Intuition on why it is hard. A way to understand the impossibility of having a bound
for multiple pass on ERM in the context of missing data is to underline that the empirical risk,
in the presence of missing data, is an unknown function: its value cannot be computed
exactly (see Section 4.4.3).

As a consequence we can hardly expect that one could minimize it to unlimited accuracy.
This is very similar to the situation for the generalization risk in a situation without missing
data: as the function is not observed, it is impossible to minimize it exactly. Given only n
observations, no algorithm can achieve 0-generalization error (and statistical lower bounds
Tsybakov (2003) prove so).

Conclusion. This highlights how difficult it is to be rigorous when dealing with multiple
sources of randomness. Unfortunately, none of these limits are discussed in the current
version of (Ma and Needell, 2018).This makes the approach and the main theorem of (Ma
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and Needell, 2018) mathematically invalid. In the present paper, the generalization risk is
decaying during the first pass, and as a consequence, the empirical risk also probably does,
but this has not been proved yet.

In the following paragraph, we give details on the missing technical Lemma.

D.1.2 Missing key Lemma in the proof.

Proving that ( fk) is a.s. convex is an important step for convergence, which was missing in
the analysis of Ma and Needell (2018). More precisely, in Lemma A.4. in Ma and Needell
(2018), a condition is missing on G(x): G needs to be smooth and conver for its gradient to
satisfy the co-coercivity inequality. Note that this condition was also missing in the paper
they refer to Needell et al. (2014) (Indeed, at the third line of the proof of Lemma A.1. in
Needell et al. (2014), one needs f to be convex for G to be convex). Co-coercivity of the
gradient is indeed a characterization of the fact that the function is smooth and convex, see
for example Zhu and Marcotte (1996).

D.2 Proofs of technical lemmas

Recall that we aim at minimizing the theoretical risk in both streaming and finite-sample
settings.

§* = argmin R() = argminE(y, ) [£:(8)] . (D.2)
BeRd BeRd

In the sequel, one consider the following modified gradient direction
3(By) = P~ K (XLP7' 8, — yi) — (1= P)P*ding (. XT) By (D.4)

Note that for all k, Dy. is independent from (Xk.,yx). In what follows, the proofs are
derived considering
E = E(Xk:ayk)aDk: = ]E(Xk:vyk)EDk:

where E(x, ..y and Ep, denotes the expectation with respect to the distribution of ( Xk, yk)
and Dy. respectively.

D.2.1 Proof of Lemma 2

Lemma 12. Let (Fi)r=o be the following o-algebra,
F=0(X1,y1, D1+ oo, Xioy Yky Dis)-
The modified gradient gi(Br—1) in Equation (D.4) is Fy-measurable and

E [Gk(Br—1) | Fe—1] = VR(Bk-1) a.s.
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Proof.
9 B (Xy..u0), D [P_le:XIZP_l] Br—1 — E(x,..00). D [P_lf(k:yk]
) [P PX X PP~ By + P73(P — P*)diag(XpXj) Br1 — P™ P Xy
B E(anyk) [(I - P)P_zpdiag (XleiF) /kal]
= VR(ﬁk—l)v

In step (i), we use that Bi_1 is Fi—_1-measurable and (X, yx, D) is independent from Fj_q.
Step (ii) follows from

Ep, [Xng’] = PX.XTP + (P — P?)diag(Xy. XT),
Ep, [diag(f(k:)zg?)] — Pdiag(X.XT),
Ep,. [Xk:] = PXj..

D.2.2 Proof of Lemma 3

Lemma 13. The additive noise process (gi(5*))r with 5* defined in Equation (D.2) is
Fr—measurable and has the following properties:

1. Vk = 0, E[gk(ﬁ*) |Fk,1] =0 a.s.,
2. Yk =0, E[|gr(B)|? | Fx_1] is a.s. finite,

3. Vk = 0, E[gr(8%)ge(8*)T] < C(B*) = c(B*)H, where < denotes the order between
self-adjoint operators (A < B if B — A is positive semi-definite).

Proof. 1 The first point is easily verified using Lemma 2 combined with VR(5*) = 0 by
(D.2).
2 Let us first remark that by independence E[| i (8*)|? | Fr—_1] = E[|dx(8*)|?]. Then,

- 2 — 2 -
Bl1g(8")1*] < [xw (XL — ) ] + ”I)WE (117~ diag (X XT) 512
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We decompose the computation with respect to Ep,. first,

B [(X’Zp_lﬂ* - ykﬂ — Ep,, |(XEP78°)?| - 2mEp,, | XEPT'6* | + v

d 2 d
=Ep, (Z Xijpy ! ;) —2ysEp,, [Z ijp;16;] + Ui

j=1

d
= > Ep, [Xzfjpj ﬂ*Q] +2) Ep, [ngXklpj p B 5[]
j=1 I<j

d
— 2uk Z Xii B + i
=1

d d
- Z Py X587 + 22 X Xua B3 8] — 2y Z XiiBl + i

j=1 I<j j=1
d
= (X8 =) + Y (' — VX582,
7=1
which gives
% —1 o* 2 * 1-— p * . *
Ep,, [(X,ZP 'p —yk> ] < (XEB" =) + T’”ﬁ Tdiag( Xy X[)8". (D.8)
m

As for the second term,

d
Ep,. [|P~ diag(X. X8| = Ep, [Z X;*jp;%;?]
j=1
d
- 2 kjpj ;8
j=1
L

d
< 2 X872

() (gr)

1 R
fHX 126" diag (X} Xj,) 5"

Finally, one obtains

. 1
Ellgi(8)I? | Fra] < pT]E(Xk:,yk) [(er) 1 Xk ]

(1_pm)+(1_pm

2
+ p:;n ) ]E(Xk:,yk) [HX]C;HZ,B*Tdiag(Xk;Xg?)ﬂ*] .
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3 We aim at proving there exists H such that
E[gi(8%)gk(8)"] < C = cH.
Simple computations lead to:
E[gx(8%)gk(8)"] = E[Ty + To + Ty + T3],

with:

3
[l

(XEP1p* —yp)? P X XE P,
—(XEP7'B" — yo) P X, 8T diag (X X1 PT2(1 — P),
Ty = (I — P)P*diag(Xp. X[,) " 8" diag(X. X\)P~*(I — P).

&3
I

Bound on Tj. For the first term, we use

~ 1

PIX.XIPl <
p

2
m

since for all vector v # 0, v7 (p%f(k)?g’ — P_le:X,ZP_1> v =0,

d
1 1 ~ 1 1 ~ -
Z ( — 2) Xlzjng + 2 Z < — > ijXklUle

2 2 }
1 ~ 1 1 1 1\ ~ =
_ X2,U2,_|_2 Z <_> (_>X X100
2 kj%j 2 2 2 2 kjA kYU
pj) 1<j<i<d \ \Pm  Pj ) \Pm Pj

3

1 1 1 1 1
7_ﬁ) > \/(p?n_zﬁ-) (ﬁ_7)' Indeed,

(L o, 11 U S L,
pho pipipE, Pt ) P PRPE O pRpE P

(o)
= - > 0.
PmPj  PmDPl

Let us now prove that

1 . 1
— X X < =X X1
N .
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i.e.
X XE < X XE. (D.10)
Indeed, for all vector v # 0, vT (X} X[ — Xk:f(;ﬁ)v = 0:
d
UT(Xk;Xk Xk Xk 2 514] ij f + 2 2 1 — 5kj5kl)ijXklUjvl
Jj= 1<j<i<d
(iv) d 2 2
= Z 5kj ijv] + 2 Z \/ 1 — 5 5kl)ijXklvjvl
j=1 1<j<i<d

d 2
(Z 5,WX,WUJ> >0

J=1

Step (iv) is obtained using (1 — d;0k1) = \/(1 - 5]%,].)(1 —62,). Indeed,

(1= 61j0r)® = (1= 63,) (1 — 671) = (1 — 2616k + 67;00) — 1+ 63 — 000 + 0y = 0
= ((5kj — 5kl)2 = 0.
Then, by (D.8) and (X/.8* — yx)? = €3,

1 1- Pm * . *
E(Xk:,yk) [T1] = E(Xk:’yk) L)QeiXng} +]E(Xk:’yk) { 3 (fB leag(inXlZ?)/B )Xng] :
Noting that
|diag(Xk)B** < | Xk:[ 1877, (D.11)

1 1—p N
E[Th] < pTVar(ek)HJr s | Xk |2 18% P H (D.12)

m m

Bound on 73. Using the resulting matrix structure of
(I - P)P~-diag(X, XT) 57 diag(X XT)P~2(1 — P),
detailed as follows
(ﬁf)2 0 X BIB30% 0 X Xio

(83)% 0pa Xty
one obtains
Ep,. [T3] = (I — P)P~2Pdiag(Xy. X1.")3* 6*7 diag(Xy. Xy.T )PP~ (I — P)

-y
+ (I = P)P™2(P — P)diag(X). X3, " )ding(8* 87 )ding(Xp. X, T)P~2(I = P). (D.13)

~

=:T3b
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Using similar arguments as in (D.9), both terms in (D.13) are bounded as follows

1_ m 2 . * Nk .
T3a < (pf)dlag(Xk:Xk:T)ﬁ /8 leag(Xk:Xk:T)

m

1 - m 3 . . * * .
Ty < (pf)dlagukzxk?)dlagw 8T diag (X1 X1.T)

m

For T3,, one can go further by using
diag(Xy X5,) 8" 8™ diag( Xk Xp) < | diag(Xy:) 8" > X5 X (D.14)
Let us prove that for all vector v # 0,
o (| diag(Xp:) 8" |* Xp: X7 — diag(Xp. X7)8* 8T diag( X5 X30))v = 0, fe.
d

d d
)3 ((Z X3 31) XE ng6;2> vi+2 Y ((Z X%lﬂﬁ) Xij Xm ﬁy*‘ﬁanEngm> vmvj = 0
=1 =1

j=1 1<j<m<d

=:Q

2
Indeed, Q > (Z?_l \/(Zf_l X2 1*2) ng - X;l]ﬂ]*.%j> > 0, since, looking at the term

depending only on v;vp,:
d
((Z Xéﬂﬁ) Xiej Xiom — B;ﬁaxzjxlfm)
=1
d d
= (Bt ) o - ((Bovte) - oo
=1 =1
is equivalent to

d d d
(2 xw) Xix (2 x,a/aﬁ) X X252 (z x,zlﬁ;2> X3, X3, 56 > 0
=1 =1 =1

d d
< ( (Z Xlzl ;2>X’3jxk7nﬂ; B (Z X/%l ;2>szxkj5:n,) =0
For T3, one can also dig deeper noting that
diag( Xy X1 )diag(8*6*7)diag( Xy X[) < ||diag(Xg.)8*|* Xe. X1 (D.15)
For all vector v # 0, we aim at proving
o7 (| 8T diag(Xy.) |> Xp. XF — diag(Xp. X diag(8* 8T )diag(Xg. X1)))v = 0

d d d
> ((Z leﬁz”) Xiyj — X;clj652> vi+2 ), (Z Xzfzﬁz”) Xij Xemvjvm = 0.
j=1 \ \i=1

1<j<m<d \l=1
J
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2
Indeed, Q' > <Z \/(Zl L X2 B; )X,%j — Xﬁjﬁ;%j) > 0 since

() o)
(g ()
)

d
A (2 X%lﬁl’a) Xk]kaB*Q + (Z Xk: Xk:ka:] *2 ijkaﬂ*2/8*2
=1

Combining (D.11), (D.14) and (D.15) lead to

(1 _pm)2 *
T!\Xk:HZHﬂ |*H

m

E(xp0) [T3a] <

(1~ pm)® .
E(anyk) (T3] < Tm”XkHQHﬁ HQH

m

and to the final bound for T3,

1 _p 2 * 1 _p 3 *
< (pﬁm;u?ﬂ 2H + (pgm)wm 2o, (D.16)

m m

E T3]
Bound on T + T§'. Firstly, focus on Ty:

Ty = — (XL P7'8* — yp) P~ X 8" diag (X X)) P2(1 — P)
_(A - B)?
where
A =P X XL P15 3T diag( X XL)P~2(I — P)
B = P_le:ykﬁ*Tdiag<Xk:Xle)P_2(I_ P)
_ Computation w.r.t. Ep, .. Term A can be split into three terms, denoting Xy =
X XE
Ay = P~ diag(X,,) P 8* 8T diag(X,, ) P~2(I — P)
Ay = PNy, — diag(Xy)) P~ diag (8" 8*")diag(X) P~*(I — P)
Ag = P7H(Xy, — diag(Xp)) P (88" — diag(8*8*"))diag(Xx) P~*(I — P).
Noting that o o
Ay = P 2diag(Xp. X1)p* BT diag(Xy. X1L)P72(I — P),
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the expectation Ep, has already been computed in (D.13), so

Epy. [A1] = P7*Pdiag(Xy. Xy ") " 8™ diag(Xy. Xy, ") PP~(I — P)
+ P72(P — P*)diag(X. X" )diag(8* ™" ) diag(Xy. Xp." ) P~*(I = P). (D.17)

As for Ay, making the structure of P~ (X X}, — diag(Xy. X},)) P~ diag(8*8*T)diag( Xy. X})
explicit,

1 3 3 2 1 3 3 2
0 @5k15k2Xk1Xk265 e PiPa 5k15kka1Xkd 5
1 3 3 x2
rpa Ok2051 X2 X5y 51 0
A2 = . ;
1 3 3 Qx2
PiPa 5kd5k1Xkka151 0
one has

Ep,.[A2] = (Xp. Xp.! — diag(Xp. Xp."))diag(8* 87 )diag(Xp. Xp.T )P~2(I — P).  (D.18)
As for Az, the term P~1( X3 X7, — diag(Xp. X1))P~1(B*8*T — diag(8*8*T))diag (X X7.)

can be made explicit as
d 1 * 3 ax d 1 2 2 1 * 2 2
Do iy Okt X k1B 01 X1 B D3 1o SR XE1B Or1 810 X1 Xio B3 -+ Dis1d oo ORI X k1B 0k1 64 X1 X o8y

d—1 1 * 3 *
2=t pipg kX k1B 0ka Xy a8y

which gives
Ep,. [45] = (X3 X} — diag(Xy. X)) (8*8*T — diag(8*8*"))diag(Xy. XL )PP 2(I — P)
+ (I — P)diag (X, X}, — diag(Xe. X[))(8*8*T — diag(8*8*"))diag(Xy. X}L)) P2(I — P).

Noting the following,
diag (X5 X7, — diag(X. X7))(8*8T - ding(8"8°T))diag(X. X))
— diag (Xk:X,z/B*B*Tdiag(Xk:f(,Z)) — diag(Xp XE)diag(5* 8T )diag(Xp XT),
one has

EDk: [A3]
= P P(X. X — diag(Xp. X)) (8*6*T — diag(B*6*T))diag(Xp. XE)PP~2(I — P)

+ PP — PY)diag (Xk:X,ZjB*ﬁ*Tdiag(X’k:X’,Z)) P~ - P)
— P7Y(P — P diag(Xy. X} )diag(8* 6T )diag(X. XLL)P~2(I — P) (D.19)
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Term B can be made explicit as follows

) 1,%5{5231)(?1 p%ﬁ?z%‘sﬂXinXi?
P X, 8 diag (X4 XE) = | 529300 X 500 Xa - B305 X3

which implies

EDk; [B] = kak:B*Tdiag(Xk:Xk:T)PP_2(I - P)
+ yr(I — P)diag(Xy.5*T diag(X. Xp.T))P~2(I — P). (D.20)
Putting Equations (D.17), (D.18), (D.19) and (D.20) together,

E [Tg + TQT] = E(xp.00) [T21 + Ty + Tog + Tiy + Toy + T, + T25]

Ty = —2(P~" — I)diag(Xs. X ") 8" 8" diag(Xp. Xz )(P~" = 1)

Ty = —2P73((I — P)(I — 3P + 2P?)diag(X}. X}, )diag(5*8*T ) diag(Xy. X5 )
Th3 = — X Xy diag(8*8*")diag(Xy. Xp." ) (P~*(I — P) — P~'(I — P))

Tos = —(Xp" B* — yp) Xp: 3" diag(Xp. X" ) P~H(I — P)

Tos = —2(Xi." B* — y)(I — P)diag(Xy. 5" diag(Xy. Xp."))P~*(I — P),

Computation w.r.t. Ex, .. For Ty, it trivially holds that
. TN n* a*T 12 T
—diag(Xx. X.) 5" 0™ diag(Xk. X}.) < 0. (D.21)
Indeed, for all vector v # 0,
d d 2
MXGBPI 2 > BB X X vivm = (Z X,ijﬁ;vj> > 0.
j=1 1<j<m<d j=1

Denoting the maximum of the coefficients of P as pys = max; p;, one has

1- 2 o w1

T21 < _QWdlag(XkaT)B 6 leag(Xk:Xk:T)
m

<0 (using (D.21)).

Tso is split into two terms,

Thoa = —2P73((I — P)(I + 2P?))diag(X;. X;." ) diag(8* 8" )diag(Xe. Xi.")
Tyop = 6P (I — P)diag(Xy. Xi.")diag(8*8*T)diag( Xk X5 ")

234



Appendix D. Appendiz of Chapter / D.2. Proofs of technical lemmas

(1 —par)(1 + 2p3%))
3,

Tyoq < —2 diag (X, Xy, )diag(8*8*")diag( Xy Xp.") < 0,

(lfplvl)gl+2p?u) > 0.

m

since it is a diagonal matrix with only negative coefficients, and noting that

Then,
6(1 — pm)
2

m

Toop < diag( Xy Xr. " )diag(8*5*T ) diag(Xp. Xy ")

which implies

6(1 —Pp ) *
Tm\\Xk:HQIIﬁ I*H

m

B (X [To2n] <

using (D.14) and (D.11).
As for Thg + T%, note that

(par — 1)?

2

Tos + Ty < —2
D

(Xk X" diag(8*8*T) diag(Xg. X3 ")
+ diag(6*6*T>diag(Xk:Xk:T)Xk:Xk:T)

One prove that

— (Xp X" diag (88T ) diag (X5 Xy, ") + diag(Xy. X" )diag(8*6*7) X4 X, ")

< —2< min 5*2ij> Xp. XL (D.22)
] 9" ’

Indeed, denoting m = (minjzl’m,d B;Qlej), one has

o (= 2mXp X1 + (X3 Xi. " diag(8* 87 diag(Xg. Xy ")

+ diag( Xy Xy )diag(8*8*7) Xp. Xi.T))v = 0
d

= Z (meX,%j + 2X,§j ]*2) 0]2-
j:

[y

+2 Z (—2mXp; Xig + Xi; X0 B5” + X33, X B57) vjvg = 0
1<j<q<d

d
PN Z (—2mX%j + 2X,3j5]*-2) 0]2-
j:

[y

2 Y \/ —amXE + 2X1 B ) (~2mXE, + 2X}, 622 ) vy, > 0

1<j<q<d

- (Z \/<2mX2 +2X3 5*2) ) >0,

j=1

235



Appendix D. Appendiz of Chapter / D.2. Proofs of technical lemmas

using that
(~2mXE, + 2X0,87) (~2mXE, + 2}, 5
* *2\ 2
< (—2kaijq + X]?ijqﬁjQ + Xl?quj/BQQ)
* %2 2
had (XlngkqﬁjQ - ngijBqQ) >0

Therefore

—1)2 ) .
B (X ) [T23 + TQE)] < —QW (,mln ﬁfX,%) H <0,
pm ]:1,...,d

since H is definite positive.

Finally one uses (X% 8* — yx) = € to conclude by independence that Toy = Ths = 0.

One gets
6(1 - pm)
——

m

Combining (D.12), (D.16) and (D.23) leads to the desired bound.

E[T: +T5] < | X121 6% 2. (D.23)

O]

D.2.3 Proof of Lemma 4

Lemma 14. For all k = 0, given the binary mask D, the adjusted gradient gi(B) is a.s.
Ly, p-Lipschitz continuous, i.e. for all u,v e R?,

lgk(u) = gk (v)| < Leplu =] as..

Set

1
L:=sup Ly p < - max | Xe:|? as..
k,D Pm K

In addition, for all k =0, gp(B) is almost surely co-coercive.

Proof. Note that
I6(w) = G (0)]| = | (P X XEP™! = (1 = PP 2ding(X0.XL) ) (u—0)|
< H (PR XLP — (1 — P)P*ding(%. X)) H lu — o]
<o (%X~ (1 = puding (K SE)) [l = v
< o K=o,

where we have used the Weyl inequality in the last step.

One can thus choose Ly p = p%HXk:\P and
m

L =suplyp < sup HXk:HQ < max HXk:||2

k,D p?n k 72n
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Then, let us prove that the primitive of the adjusted gradient g is convex. To do this,
we check that the derivative of g is definite positive:

0 . 1 (o o ) o or
%gk(ﬁ) = ]? <Xka - (1 _p)dlag (Xk:Xk))
since (XkaT — (1 — p)diag (XkaT)) is positive semi-definite. Indeed,

oL (X,C:X,Z — (1 - p)diag (ka,jg)) V=0

d
~ 2 ~ ~
= Z pij UJQ- + 2 Z Xk:ijlUj'Ul =0

=1 1<j<i<d
p 2
o (Z \/ﬁxkjvj> >0,
j=1
o le \%[e \2 N2/ N2
using p (ij> (ij> < (ij) (sz> since p < 1. O

D.3 Proof of the theoretical convergence rate with estimated
missing probabilities (p;);

In this section, we consider that we access 2n observations ()N(,;:, Yy, ) 1<k<n and (Xk;, Yk )1<k<n:
we want to control the error of the estimator built with our Algorithm 2 using the second n
observations with the proportions p estimated using the first n observations. In practice, it
is likely that estimating the proportions on the same points used for running the algorithm
would not hurt the performance. However, the proof requires the estimation of p and the
stochastic gradient to be independent, we thus have to split the dataset. As we aim at
proving that the convergence speed remains of O(1/n), the induced multiplicative factor 2
on n will not modify the order of the convergence rate.

More precisely, we consider the proportions estimated on the points (X 1o Ys ) 1<k<n, for
1<j<d:

. 1 ¢
pj = n};]lx,;ﬁéNA- (D.24)

Moreover, in the exceptional case that p; = 0 (which would correspond to a feature that is
never present in the first half of the dataset, and thus would probably be discarded in practice),
we correct the estimated proportion to n~1. That is p; = max(n~1, % Dbt ]lX,;ﬁéNA)' We
do so only to ensure that p; > 0 which is necessary in the algorithm.

We then build the sequence (Bk) k>0 of iterates constructed with an estimated value of
the missing probabilities p = (p;)1<j<d € R? as follows:

Bo = Bo
2 R « « D.
{ B = he(Boors ) = Bt — i (BrrsB), k> 0 (D-25)
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where

34 (B ) = P % (RLP7' By — i) — (1= P)P2diag (X0 XT)) By
with P = diag((h;)1<j<a)- i i
We denote the averaged iterates of (Bk)k;() by (Bk)k;() such that By = k%rl ZIZZO By

Theorem 1 (Convergence rate with estimated missing probabilities). Assume that the
missing probabilities (p;)j=1,...a are estimated as in Equation (D.24) using (X],C:,y;e)lgksn
and By given in Equation (D.25) is constructed using (Xp:, Yi)1<k<n-

There exists an event A, = {Vj € {1,...,d},p; > pj/2} with high probability P(A,) =
1 — de~"Pm/3. For any constant step-size o < ﬁ, Algorithm 2 ensures that, for any n > 1,

z = 261 54 28 d(1 — pm)*"
E[ AT A]<2IE — B, - Lo 770L7’”,
[8n = Ball F1/2 | An E (180 = Bulzr/2] Tt T pm o~ 2

~
Bounded by Theorem 17 - - - N
Residual term due to the estimation of p

where pp, = minj_1_.q4 pj, 7V =« ( — %) and C = ( iﬂ) a?dCyys, where L is given in
Equation (4.6) and Cops is such that E[| Xy |*(1 XL Br_1] + |uk])*] < Cyp2, Yk = 0, and where

o
we denote ||[v]%,, = |HY?v|% and p the smallest eigenvalue of H = E (X ) [Xi: X L] which
s assumed to be positive.

In addition, one has the following unconditional result, for any n > 1,

N 1 N
R(B.) = R(.) = 3E 13, - ﬁ*uzm]

3 24 5d 20 d(1 —py)™" .
< E [H/Bn - 5*“?{1/2] CL <p — 4+ pG(n];) + n6 de pm/16> ]

~
Residual term due to the estimation of p

J

Bounded by Theorem 17

Proof. The probability of A,, is given by Lemma 16. Let us first remark
E [Hlén - B*”i]l/z] =E |:HBn - /Bn + Bn - 6*”?{1/2]
2 (B (180 = Ball2sz | + E[18n — Bulp2]) -

Note that for the first expectation in the last inequality, the randomness comes from the
estimated proportions (p;); and from the samples (Xp., yx)1<k<n, Whereas for the second
expectation, the randomness is only due to (X' k> Uk)1<k<n- We then combine Theorem 17
and Lemma 17:

e Theorem 17 (and more precisely Remark 18) gives the bound for E [|3, — B*H%Il 2]-
Note that for the conditional result, E [| 3, — B3] An] = E [1Bn — Bull312 ], because
Bn L A,
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e One has

E (180 = Bullia | < LE [180 — B

— IE [| nt )Y A mn?]

k=0

! S E[IBe - Aul?]

k=0
The result follows by using Lemma 17.

O]

We first prove the following key Lemma, that will be the main element in the proof of
Lemma 17.

Lemma 15. For all k = 0, one has

N n 4
E [Hﬁk — Bk”z] < iC (E [ . P = ol -
TH

minj—1,__a(pj, H;)*

1/2

with v = a( — %) and C = <1 + #) a?dCyqps, where L is given in Equation (4.6) and
- s 1/2

Cobs s such that (E[HXk|‘4(‘Xl?5k—l| + |yk‘)4]> < Cobs, for all k=0

Proof. Let us denote 02 := || B — Bel®> = 1Pk (Bre—1, D) — P (Be—1,p)|>. We first remark that

E[5¢] = E[E[5¢[2]],

so that we bound the conditional expectation E[6Z|p]. In the following, to control the
deviation of 8 to ), we use
1. the deviation resulting from the use of p instead of p to construct fj (term 1 in (D.26)),

2. the deviation resulting from the use of Bi_1 as a support point instead of Bz_1 (term 2 in
(D.26)).

To do so, we introduce a ”ghost” sequence (never computed) hk(Bk_l, p). Noting that for

any > 0, and any a,b e R we have ||a + b||> < (1 +n)||a||? + (1 + n~1)[|b]|?, we have:

BI6215] = E [Ihk(Be-1.5) — b (Be1, ) + he(Brr,p) — hi(Bio1, )|
< (1 D E [ B) ~ helBoro ) 10 +(1+ ) E [P Bicr. ) = (B, ) 1)]

g g
term 1 term 2

(D.26)

We control both terms separately.
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Control of term 1. Almost surely, we have the following

1he(Br—1,D) — hi(Br—1,0)1? = | Be—1 — adr(Br—1,D) — Br—1 + agr(Br_1,p)|>
= o®|31(Br-1.9) — Gk (Br—1,9)|

= a? Z(gkj(/ék—lap) — Gk (Br—1,9))%,
=1

where gy; (Bk 1,p) denotes the j-th component of the vector f]k(Bk—l,P) e R?. We introduce
the function 1; : [0,1] — R such that 9, (t) = Gkj(Be_1,p + t(p — p)). By the mean value
theorem, one has

12k (Br—1,8) = Pk (Br—1, D) = @ ) (Wor (1) — 5(0))?
d
<a? )] sup (¥;(1)° (D.27)

Yet, w;cj(t) = <V§kj(3k,1,p +t(p—p)),p— p>. Using the Cauchy—Schwarz inequality and
denoting p; = p + t(p — p), one obtains

d

Mme )2 <a® > sup [V (Be—1,p0) |15 — pl? (D.28)
i=1 j:1t€[0’1]

M&

Recall that p; = ((p)1,- -, (pt)a)? € RL Using the form of the debiased gradient given in
Remark 16, one has for 1 < j < d:

1
S .
Grj (Brrpr) = | | #r0) (P); @ae)i ) © Xy X | B

jth position

~~

denoted g,ij (kal \Dt)

1 1 >
+ <@ @) O XYk

~—

denoted §,%j (Bk— 1,Pt)

. 2
One has [V (Be—1.p0)[? = 20, ( agk] (B’“ 1y pt)) with

1 1
(gh (77 S ) oL Ay e
agi R (Pe); jth position
— (Br—1,pt) 0 — 0
a((pt)e) 1 (pe)? O X XL | Brs otherwise

(pt); ——
fth position
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and ]
0dr;i - 0 ... .. 0 _
_1,p) = (pe); O Xy

fth position

Therefore, ¥/ € {0, ...,d},

<8§kj (B )>2< 1 (Xs (1K B | + lu)?
A(pe)e) NPV )OS (p8 VRIS kPR TR

with (p¢)min = minj—q,__q (p¢); which leads to

d ~ 2
P 2 _ 09kj (2 ) 1 v 12(1 %A 2
193t G-I = 3 (5855 Goaop)) < e KPRl +

One obtains, plugging the equation above into Equations (D.27) and (D.28):

. R 1 N s )

| (Bri—1, ) — hie(Br—1,p)|* < &®d sup —— | Xy |* (|1 X1 Brer| + yel)?[15 — p)
te[0,1] (Pt)pmin

ﬁ]

- . 1/2
Assuming that (E[HX;.C;||4(|X,£B]€_1| + |yk|)4]) < Coyps, one has, by Cauchy Schwartz,

and finally, taking expectation conditionally to p:

N R ~ ~ . no_ 2
Efl (Ber, D) — he(Bror, p)IP15] < 02dE | | K| 2(REBoors + ya)? sup 2Pl
tE[O,l] (pt)min

A 4
5 . 5 X D =Pl .
E[||hk(Br—1, D) — hi(Be—1,p)[*[p] < 02dConE? | sup | 12” P
te[0,1] (Pt)miin

Ip — pl*
min;_q_q(pj, p;j)*?

< a2dCobSIE1/2 |:

p} . (D.29)

Control of term 2. We now control the part of the distance coming form the fact that the
true-iterate hy(8k—1,p) and ghost-iterate hy(Sk—1,p) updates are computed at two different
points Br_1 and Bi_1:

17 (Br=1.P) = hi(Bre1, D)I* = | Bre1 = Br—1 — (G (Br—15) — G(Be—1,0))|
< Br—1 = Br—1* — 20 <Bk—1 — Br—t, Gk (Br—1,B) — §k(ﬁk—1,p)>
+ 0?9k (Be-1,9) — G (Be—1,)
Using Lemma 4 which gives the co-coercivity of the debiased gradient, one obtains

o[ gr(Be-1,0) — Gr(Br-1,p)|* < &*L <Bk—1 — B, G (Br—1,p) — §k(5k—1,p)> :
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It implies that

|hi(Br—1,0) — hae(Br—1,0)|* <[ Br—1 — Br—1]>

— 2« <1—> <,3k 1= Bt Gk (Br—1,p )—ﬁk(ﬁk—1,p)>

al

Denoting v = « ( %5 ) one has

E [ 1e(Be1,0) = ha(Be1, 2) 215 <E[1Bu-1 = B 1]
= 29 [ (Bt = Be1,3(Bi-1.2) — 36(Bu-1,0) ) 1]
E [Hkal - 5k—1|\2!15]
-2y <E [Bk—l - Bk—l] ,VR(Be1) — VR(ﬁk—1)> :
using that E[gi(Be—1,p)|p] = VR(Br_1) because By_; is constructed with n observations

independent of the ones using for computing p (it implies gi(-,p) L D).
Using the p-strong convexity of R, one has.

E [ (B, ) = he(Beov, 21| < (1 = 290)E | 181 = B |5 (D.30)

Conclusion. Choosing n = ~vyu in Equation (D.26) with Equation (D.29) and Equa-
tion (D.30) leads to:

A N4
E[élz] < <1 + 71'u> QQdCobsE1/2|: : lp —pl

minj_1,.._a(pj, ;)12

p] (1= A)ES 5],

Denoting C' := (1 + #) o?dCops,

k ~ 4
I —pl A
Spr1lp] < (1= ypu)*E[55]p] + 1—7#’“’1@1/2[ - 5 )p
[k+1| ] < ( [3617] ;) min;_q . q(pj, pj)*2
(1 w) 12 [ Ip— p|* .
1 —~vu)*E[62] + el L= gy . —12 P
( ’}/,U,) [ 0] mlnj:l,,,,7d(pj7pj)l2
1 _ 4
< Lope [ el _ ﬁ] ’ (D.31)
Y minj—y_q(p;,Hj)

where in the last inequality we used that E[63|p] = 0.
U

Lemma 16. Let A,, = {Vj € {1,...,d},p; > p;/2} be the event where the missing probabilities
are not under-estimated by a factor of at least two. The probability of this event is such that

P(A,) = 1 — de”"Pm/8,

where p,, = minj_q,__q pj.
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Proof. We use the multiplicative Chernoff-Hoeffding inequality: if Xi,...,X, are i.i.d.
variables such that E[} " ; X;] = E[X] = p, one has

P(X <(1-0)pu)<e "2 0<i<1.

Fix j e {1,...,d}. Choosing § = 1/2 and applying the Chernoff-Hoeffding inequality to
npj = D 0ij with d; b B(pj), one has

P(np; < np;/2) < e pil8

implying that P(p; < p;/2) < e~ "P;i/8,
Finally,

j=1
O
Lemma 17. Let A, = {Vje {1,...,d},p; > p;/2}. For any k >0,
5 251 d 271 _d(1—pn)™
E[13 - sl < 5 Loty 2 Lot i)
Pm YR T Doy TH n
with pp, = ming_y 4 pj, v = a( — %) and C = (1 + #) a?dCyys, where L is given in

- s 1/2
Equation (4.6) and Copg is such that (E[||Xk;\|4(|X,r£ﬁk_1| + \yk|)4]> < Cops, Yk = 0.
In addition, Yk = 0,
4 6 2n
275d + iu 4 n6 denpm/16> )

6 n2

A 1
E [H/Bk - BkHQ] < %C <p6 P

Proof. We start by proving the result conditional to the event A,,. We recall that

E[|5% — Brl*14,]
P(A;,)

E[|8x — Bel*|An] =
Using Lemma 16, one has P(A,) > 1/2. Thus,

E[x — Bel*|An] < 2E[|Bx — Byl*La,].

By Lemma 15, it leads to

ik

: 2 15— ol
E[!ﬁk—BkIQIAanC(E{ ol

minj—1,__d(p;,D;
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]lAn

Yet, almost surely iy HEAL < p6 given that on the event 4, Vj =1,...,d, p; > pj/2.
,,,,, 55Pj m
We thus have .
« 201
E[|3: — Bil?|An] < =5 —CEY2[|p — p|*
[ I Axr] T [ I*]

~ d ~ d ~ A

Moreover, B [[p — p|[*] = B(X0_,(5; — p)*)? = (X1 E(B; — pi)*) + X0 ji—y ey (B(D; —
)2 (E(pj — pj)?), by independence of the estimation of each coordmate

We thus have to compute the 4-th order moment and the quadratic error of p,.
| Finst, E(p, —lpj)Q) = Var(p;) + Bias(p;)?, with Var(p;) = Var(; Xp_ pj(1 — pj)) =
2 (i (1 —pj)) < 45

By denoting p7¢ = L Ly 4Na, one has E[p?¢] = p; and thus

J

o A o 1 1 1
Bias(p;) = E[p; — p;] = E[p; — pj] = E {nﬂﬁ?%&o] = —(1=py)" < —(1=pm)"

3

2

Thus 5%y (B(; — 2P EGy — py)?) < & (2 + (21 = pu))?)
On the other hand, for the 4-th order moment, E((p; —p;)*) = 2 (njuap, +3n(n— Dp3(1—-
pj)?), with g, = pj(1 —pj)* + p?(l —p;) < 1/12 (this is the classical computation of the
4-th moment of a binomial random variable). Overall Z;-lzl E((p; — p;)*) < d(+5

d d?
S

12n3 + 16n2) <

2
Combining the second order and fourth order terms , E [||p — p[*] < f%—l—dQ (% + (21— pm)")Q) <

2 (5 + (A0 -pa)?)
Therefore,
2
E[lp—p|*])* < d (4571 + <71L(1 —pm)"> ) (D.32)

255 d 2T 1 _d(1—pn)*™

which implies

(8% — Bel*| An] < **C +5—C 5
pS v n pS yu n
For the unconditional result, one splits the term to control on the event A, and A, i.e.
A~ 4 N 4 A 4
- —plt1 — |1 4e
£ [ __lp—pl” 12] < E} { _1p =P, 12} L gl { =P ag 12]
minj_1,...a(pj, b;) minj—y,...a(pj, by) minj_y,...a(pj, bj)
(D.33)
A . 1 26 26 .
On the event A, one has p; > p;/2 which leads to —— a0 B < o < P Using
Equation (D.32), one has
E1/2 [ : 15— pl* 1, ] < 27457‘1[ + 20 d(1 = pm)™ (D.34)
min;_y, _a(pj,p;)'? "] P m o ph, 0
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On the event A, one has p; < p;j/2 < p;.

1 Ip—p|*
E'? [ : iz lag | S E'? 12 ]lAC
) D;

min;—1,...a(pj, P

As we have chosen to assign the minimal value n=! to pj in the rare event that the empirical
proportion was 0, we have the lower bound p; > % which implies

A12
p]

s 4
EL/2 [ Ip —pl _ )12]114%} < EV2 [

. Tac n12P(A¢) = n®+/de "Pm/16 (D.35)
minj—1 ... 4(p;j, D;

using Lemma 16. Combining Equations (D.33) to (D.35), one obtains

N 4 24 d 26 d(1 — 2n
ELl/2 [ . Ip — pl _ 12] < (65 + = ( gm) + nﬁ\/ae—npm/lfi)
min;_i _ q(p;j, D) Do M D, n

Finally, with the bound given in Lemma 15, one has

24 5d N 20 d(1 = pp)*"

1 6
— d npm/16 )
E[ B — Bl*] < o <p% P R

O

Extension of such a result to cases without strong convexity (or independently of u) is
an interesting open direction.

D.4 Add-on to Section 4.5: Lipschitz constant computation

The Lipschitz constant L given in (4.6) is either computed from the complete covariates
(oracle estimate) LO® = p% max) <p<n | Xk ||, or estimated from the incomplete data matrix,

I:NA pl maxi<k<n HZk [*d , with pp, = mini¢j<qpj, and p; = M In ﬁNA the squared

norm of each row | Xj.|? is divided by the proportion of observed values S0 D . This way,

the value of || X}.|? is renormalized, by taking into account that some rows may Contain more
missing values than others. Note that theoretically the step size has to satisfy a < ﬁ,
thus LNA may be overestimated but should not be underestimated at the risk of instability
in Algorithm 2. Figure D.1 shows that using a slightly overestimated Lipschitz constant

estimate does not deteriorate the convergence obtained using the oracle estimate.
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Figure D.1: Empirical excess risk (R, (8t) — Rn(B8*)) given n for synthetic data (n = 10°,
d = 10) when there is 30% MCAR data, with 1 pass over the data and estimating the
Lipschitz constant.

D.5 Add-on to Section 4.5: Handling polynomial missing
features

The debiased averaged SGD algorithm proposed in Section 3.3.4 can be further extended to
the case of polynomial features by using a different debiasing than in Equation (4.4).

For example, in dimension d = 2, with second-order polynomial features, the interaction
effect of X1 X2 and the effects of X ,31, X ,%2 are accounted, so the augmented matrix design
can be written as

(X1|X2|X1X2|X21|X22)T

Then, the “descent” direction at iteration k in Equation (4.4) should be chosen as
U9 @ Xy X[k — diag(U)° ™ © Xpyn

where p1 pip2 pip2 P11 Pip2
pip2  p2  pip2 Pip2 P2
U= |pwp2 pip2 pip2 pip2 p1p2 |,
b1 pPip2 pip2  pP1 Pip2
pip2  p2  pip2 Pip2 P2

and diag(U) denotes the vector formed by the diagonal coefficients of U and U®~! stands
for the matrix formed of the inverse coeflicients of U.

Synthetic data. Considering a second-order model, we simulate data according to y =
(X1 X.2|X2|X3)TB* + e. An additional experiment is given in Figure D.2 in Section D.4,
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illustrating that Algorithm 2 still achieves a rate of O (%) while dealing with polynomial
features of degree 2.

Rn(ﬂk) - Rn(B L)

— AVSGD

10° 10t 10? 103 104 10°

k

Figure D.2: Empirical excess risk (R, (8r) — Rn(8*)) given n for synthetic data (n = 10°,
d = 10) when the model accounts mixed effects.

Real dataset. About large-scale setting there is no computational barrier to apply the
proposed method in high dimension, as the computational cost is similar to standard SGD
strategies without missing data. These are computationally cheap at each iteration and
particularly relevant on large datasets. In this section, we propose to run the proposed
algorithm on the superconductivity dataset as in Section 4.5.3. 30% of missing values are
uniformly introduced in the initial 81 features, with n = 21263. However, here we consider
polynomial features of order 2, which increases the initial dimension 81 to 3400.

The empirical proportions of missing values for each variable in the resulting dataset are
represented on Figure D.3, and the observed convergence rate for one pass on the data is
displayed in Figure D.4. With the same numerical complexity, Algorithm 2 performs as well
as an averaged SGD strategy run on the complete observations, whereas a standard SGD
strategy run on imputed-by-0 data saturates far from the optimum.
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Figure D.3: Proportion of missing values for the polynomial features of degree 2 on the
superconductivity dataset, when the initial missingness proportion on the raw features is
30%.

4x107!

3x107!

2x107!

Rn(Bk) - Rn(ﬁ *)

—— AVSGD (complete data)
~ AVSGD (NA)
—— AVSGD (NA, imput0)

100 100 10°
k (one epoch)

Figure D.4: FEmpirical excess risk (R,(8x) — Rn(5*)) given n for the superconductivity
dataset (n = 21263) (containing 81 initial features) and d = 3403 with polynomial features
of degree 2. Three different algorithms are compared: an averaged SGD on complete data
(blue), the proposed debiased averaged SGD Algorithm 2 (orange) and an averaged SGD
run on imputed-by-0 data without any debiasing (green).

D.6 Add-on to Section 4.5: Description of the Traumabase®
data variables

The variables of the TraumaBase dataset which are used in experiments are the following:

e Lactate: The conjugate base of lactic acid.
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e Delta. Hemo: The difference between the homoglobin on arrival at hospital and that in
the ambulance.

e VE: A volume expander is a type of intravenous therapy that has the function of
providing volume for the circulatory system.

e RBC(C': A binary index which indicates whether the transfusion of Red Blood Cells
Concentrates is performed.

e SI: Shock index indicates level of occult shock based on heart rate (HR) and systolic

blood pressure (SBP). SI = %. Evaluated on arrival at hospital.

e HR: Heart rate measured on arrival of hospital.

o Age: Age.
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Appendix E

Appendix of Chapter 5

E.1 Proof of Proposition 21

Proof of Proposition 21. We denote by (¢é1,...,¢,) the patterns of missing data associated
to the observed data §°P. It is thus the concatenation & = (¢;,04) of ¢; with the zero
vector 0g = (0,...,0) of length d. Since all ¢; values are observed in 7", it is the reason
why the last d values in ¢; are fixed to zero. Then, the MAR assumption indicates that
P(& | §i,2i;0) = P(& | 99™;\), with A the related parameter. Consequently, similarly
to (5.3) and using the i.i.d. assumption of all uplets (¥, 2, ¢;), the whole likelihood can be
decomposed into two likelihoods

L(m, 0,9, \; 555, &) = L(m, 0,¢; 5°%) x L(\; & | 595). (E.1)

Providing that (#,v) and X\ are functionally independent (ignorability of the MAR
mechanism), the maximum likelihood estimate of (7,60, ) is obtained by maximizing only

L(,0,1;§°>), and does not depend on L(); & | §¢°%). Finally, by using (5.16), the observed
likelihood L(, 0, ; §2%) is

K d

L, 0,4; ~0bs) = Z TSk (Y H Oék] “id p( ak])(l_cij) (E.2)
k=1 j=1
d

= 2 e fu (95 01) H (cij | zik = 159p). (E.3)

As P(c;j | zir, = 1;9) corresponds to the MNARz definition (5.12), the observed likelihood
L(m,0,v;5¢P%) is equal to the full observed likelihood L(m,,; y¢b, ¢;) associated to the
MNARz model,

K

L(m, 0,054, i) = Y mifuW™506) [ [Plesj | 2in = 1;0).

k=1 7j=1

QL
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E.2 Identifiability

E.2.1 Continuous and count data

Proof of Proposition 22. Suppose there exist two sets of parameters {6, 1} and {#’, 1’} which
have the same observed distribution, i.e. f(y; obs ¢ 0,1) = f (s obs ¢;: 6 4)"). More precisely,
one has

d
vy € RY, Ve € {0, 1), ZJ i (i3 k) H (rj +Brjyiy) 7 [L = plaw + Brjyis) ]~ dy

d

B Z j mis iofi (43 O1) H (8" ki) [1 = p(( Vg + (B kjui)] 9 dy
Let us consider the case when ¢;; = 1 for all j =1,...,d. One has

K d K’ d

> fr (i On) H plaks + Brgi) = Y o fr(vis ) H (8)wjvis)-
k=1 j=1 k=1 j=1

By using the identifiability of the marginal mixture, one obtains ¢ = 6. In addition,
integrating out over all the elements but the j-th element, one has for all y;; € R,

K K’
D e fri (Wi Oki) P g + Brjtis) = D T (Wigs O)p(( kg + (B kjvig).
f—1 i1

In the sequel, we use the same reasoning of Theorem 2 in (Teicher, 1963).

Let us denote Fi(yij) = frj(ij; Oj)p(cw; + Bryyis) and Fy(yij) = fuj(yij: Or)p((o)rs +
(8")kjvij). Without loss of generality, assume that Fj, < F; and F}, < F} for k <. If F} # F,
we assume also without loss of generality that F < F|. Then, i < F] for 1 < k < K'.
For uw € T1, where T1 = Sp, n {u : Fi(u) # 0} is the domain of definition of Fj such that
fij(w; 015)p(aij + Biju) # 0, one has

K

m+2m“5 Zk i

Letting u — +00, m; = 0 which is in contradiction with the mixture model (where 7, >
0, Vk =1,..., K. It implies that Fy = F|. For any u € T}, one has

T Tk
! = Fl(u - (u)

Letting again u — 400, one obtains m; = 7} and ZkK 9 T L Fl(u Zk 9 ﬂ';c;: (Zg We repeat
this argument to conclude that Fj, = F} and m, = 7, for k = 1,..., min{K, K'}. Finally, if
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K # K', say K > K', ZkK:K,H 7 Fi(u) = 0 implies 7, = 0 for K’ + 1 < k < K which is in
contradiction with the definition of the mixture model. Thus K = K’. Note that F}, = F,
implies that p(ak; + Brjvij) = p((a")k; + (B")kjyi;) and thus ag; = (o')k; and By = (8)k;,
since p is an injective function. Indeed, p is assumed to be strictly monotone. O

Proof of Corollary 1. We use Proposition 22. We fix j. By abuse of notation, ag, Bk, px
and oy correspond to the parameters ayj, Bij, pr; and Xji; of the variable j. Let us first
consider the missing scenarios (5.6), (5.8) and (5.11) for which Sy # Br+1. To obtain the
total ordering, we need to prove that

(u—pg41)?
) 25 Wik
) (1+e o Pu)e ki Ok
lim F, = 3 = 0.
U—>+00 ,7(“_”5) Ok+1
(1+ e—ak+1—ﬁk+1u)e 20
2 2 : 1 1/ 1 14,2 _
o If o, > 0y, limy oo By = limy 4o eXp_i(ﬁ - U—z)u = 0.

o If 0} = 013+1a one has limy_, 1o, Ey = limy 400 exp (ke — Br) — (k1 — Br+1))u =0
discarding the case where (ux — k) — (uk+1 — Br+1) = 0 and assuming without loss
of generality that (ur — Bx) > (pg+1 — Br+1)- The set of nonidenfiable parameters is
{1k, Bres ket 1, Brs1 8-t (i — Br) — (k1 — Br+1) = 0}gx=1,...x and is of Lebesque zero
measure.

Finally, for the missing scenarios (5.12) and (5.13), note that 8y = Bx4+1 = 0. For the
missing scenarios (5.7), (5.9) and (5.10), one has f; = fr+1. Following the same reasoning
as above, in the case where O']% = O']% 41, one obtains the set of nonindentifiable parameters
such that pg = prs1, which is empty since pp # pg1 if 0’,% = Uﬁﬂ. O

Example 4 (Gaussian + Probit). Let us consider that p is the probit function and fy
(respectively fr+1) the Gaussian density with parameters (ug,or) (respectively (pg+1, 0k+1))-
Suppose without loss of generality that Bx = PBr11. One want to prove that

Sak+1+5k+1u e~ 12 /2qt Ok €XP —(u;f;#
lim E, := lim 7024]@4‘5]@“ 2 (uk_ﬂ Ei 0
u—~+00 u—~+00 S—oo et /th Oly1 €XP — 2:%@
Let us denote ¢(u) = \/%7 5 e ¥’/2dt. One has
lifu>0
lim ¢(u) =% 1/2ifu=0 (E.4)
U—+00 .
Oifu<0

o If Bki1 >0 (and B, > 0):

1 1
lim E, = lim exp— | u? —— — = | tu Hk e+l -0
u—~+00 u—~+00 2ak+1 2% ok Ot

assuming without loss of generality that 0,% > U]%H or iy > pr+1 of O"% = U%H.

252



Appendixz E. Appendiz of Chapter 5 E.2. Identifiability

o If Br+1 <0 (and B = 0):

liI}_l E,=0
Uu—+00
since
1 1
lim exp— | u? —— = +u<uk_'“’f+1> -0
u—+00 200, 203 Ok Ok+41
and
Sak+1+ﬁk+1u e—t2 44 0if Br+1 <0
. —0 .
lim =< 1/2if Bx41 =0and B > 0 (E.5)

u—s ap+0ru
oo T e 2t 1if Bpyy = Oand By = 0

o [f Bri1 <0 and Br < 0: One uses the upper and lower bounds for the probit function.

1 _ \ﬁ t2¢(t) _ 1
—— = exXp — ;
214 2 2 —t 4+ /t2 4+ 8/7

™

e ¢(t) < E—H\/ﬁ exp—% and % < (=t+t2+ 4)\/§exp% Thus, noting
that limy 4 o0 ¢(akt1 + Brr1u) = limy o0 G(Brr1u),

forsrt Pt o=2/2 gy ¢(Brr1u) exp ((513 - B’%H) U2> -

Saﬁﬁkue—t?/th P d(Bru) u—to 2 2
—00

As Bri1 < Br < 0, one has B2/2 — B,%H/Q < 0 and it implies

Sak+1+,3k+1u e~ t%/2 4t
lirJIrloo 7o§k+ﬁku 2/2 =0
u §o 7 e dt

1 1
lim exp— | u? 5 T 53 +u<uk—uk+1 =0,
u—>+00 20k+1 20}, Ok  Ok+1

assuming without loss of generality that O"% > O',%_,’_l or g > Wil if 0,3 = O']%+1, one has

Given that

lim FE,=0.

u—+00

Example 5 (Poisson + Probit). Considering that p is the probit function and fy (respectively
fr+1) the Poisson distribution with parameters Ay (respectively Ap41). Suppose without loss
of generality that By > Br+1 and A\ > Apy1. One want to prove

Qg1 +Br+1u ,—12/2 u =
S*OO e dt )\ e k+1

. . k+1
lim F,:= lim =0
u—>too T usHoo SakJeru e—12/2t e
—0
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o If Bk+1 >0 (and B, > 0): using (E.4), one has

Akt1

ul_i)I}_loo E, = ul_i)rfq) expuln " = 0.
o If Bri1 <0 (and B, = 0): one has
uEToo E, =0.
using
UEIEOO expuln Af\;rl =0

and (E.5) for the missing distribution part.

o If Bri1 <0 and B < 0: using (E.6), one obtains

lim E, < lim exp ﬁg—ﬁiﬂ u? | expuln Ak+1 =0
u—+00 v u—~+00 2 2 )\k 5

because B7/2 — B2, ,/2 < 0.

Example 6 (Poisson + Logistic). Considering that p is the logistic function and fi
(respectively fr+1) the Poisson distribution with parameters Ny, (respectively Ai+1). One want

to prove that
1+ e~k —Pru

: : Ak+1
lim F, = lim expuln s
u—+00 u—>+00 1 + e~ %+1=Bry1u N

=0.

Assume that A\, > Aiy1 without loss of generality.

e For the missing scenarios (5.6), (5.8) and (5.11) for which By # Br+1, one
obtains the generic identifiability where the set of non-identifiable parameters is
{ag, Br, A\p st.(In A — Br) — (In A1 — Brt1) = O}p=1,..x and is of Lebesque zero
measure.

e For the missing scenarios (5.12) and (5.13), note that By = Br+1 = 0. For the missing
scenarios (5.7), (5.9) and (5.10), one has By = Pr+1. It implies that idenfiability holds
since

lim FE, = lim expuln Akt 1 = 0.

u—+00 u—+00 k

E.2.2 Categorical data

Proof of Proposition 23. Let us first consider the case where §i; = (0,...,0) € RY Yk =
1,...,K,Vj =1,...,d. Suppose there exists two sets of parameters {#,1} and {#’, 1’} which
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have the same observed distribution.

K d
Vyi € ]Rd,VCi € {0, l}d, Z f kak Ui Qk H Cu 1 _ p(akj)]licijdy
k:l ;ms :
d
= Z f (i 01) H DL = plog)]' " dy
k=1YYi j=1

Identifiability of ¢y This implies that the marginal distributions of the pattern of missing
data for the two sets of parameters ) and 1)’ are equal.

d
Z L HP k) [1 = ploy)]' 4 = Z u H ) [1 — plag;)]

One recognizes the finite mixture of K different Bernoulli products with d components and
with parameters (p(ax1), - - (k) o, .. and (p(ay); -, p(eh)) ot The generic
identifiability up to a label swapping of these parameters is given by Corollary 5 in Allman
et al. (2009). As the function p is strictly monotone, the equality p(ax;) = p(cy;) implies
Qgj = .

Identifiability of 8 Let us consider the case where all the elements of y; are observed, i.e.
cij =1,Vj=1,...,d. One has

K d K’ d
> f(Yi; Ok H plakg) = Y mifu(wis 0) | | plcdy),
k=1 j=1 k=1 7j=1

i.e. by independence to the group membership,

K 4 K d
Dk | ] o wigi O)olans) = D | | Frg (Wi 00 p( i),
=1 =1 =1 j=1

K L5 K’ d £; .
o 3 m Tl Y CIEED WA FEnN) (CHRED
k=1 j=1 h=1 k=1  j=1 h=1

We recognize the finite mixture of K multinomial distributions with d components

Gy - . 0y
for y;; = (yilj, - ,yi;),j = 1,...,d with paramaters (6y;) = (%j, .. ,Qk]j),j =1,...,d
and proportions (7 H;l:l plag;))k=1,.. k. We can thus apply Theorem 4 (Allman et al.,
2009) with the model M(K;ly,...,l3) which gives the generic identifiability of the model

paramaters up to a label swapping, i.e.

Vk,Vj, el’clj = (0 j)h

d d
vk, m Hp(akj) = Hp akj

j=1 J=1
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The second equality implies 7, = 7}, using the generic identifiability of p(ay;), Yk, V) stated
above. If K # K’ say K > K, Zf:f(ud Tk ]_[;.l:l p(oj) Hfljzl(ezj)y?j = 0 implies 1, = 0
for K +1<k<K.

We consider now the missing scenarios for which 3;; # 0. The identifiability does not hold.
We can present a counter-example. The set of parameters ¢ = {a = (1,...,1),8=(1,...,1)}
has the same observed distribution than another set of parameters ¢/ = {¢/ = (0,...,0),5" =
(2,...,2)}. Indeed, in the case where y;; = (1,..., 1), p(owj + Brjyi;) = plog; + By ¥is)-

E.3 Detailed algorithms

The algorithms for the different missing scenarios and type of data are given. In particular,
for continuous data, we derive the formulae assuming Gaussian data.

E.3.1 EM algorithm

The EM algorithm consists on two steps iteratively proceeded: the E-step and M-step. For
the E-step, one has

Q(m, 0,¢; 7", 0", ")
= ]E[écomp(TD 97 ¢7 Y, z, C)‘y;)bs7 Cis 7T7.7 970; ’(/JT]

E [log (s fi (yi; O)P(ci | yi, zin = 1;9)) | 4™, ¢y, 07, 4"

Il
NgE
D=

s
Il
—
b
Il
—

[l
NgE
D=

J og (e fi (yis O)P(ci | yir zik = 1 0))Py™®, zip = Ly, cisw”, 07,407 )dy™™

-
I
-
el
Il
—

Il
1=
D=

(Tik)TJ log(m fi(yis O)P(ci | yir zin = 1;90)) Py [y, zan = 1, iy, 07,47 )dy™™

@
Il
—
b
Il

1

using P(yi™S, zix = 1|y, cis 77, 07, 97) = (i) Py y9Ps, 2 = 1,¢4507,907) with (11)" = P(2i =
1] yeP% ei;3m™,07,9") in the last step.
It leads to the decomposition in (5.21) recalled here

N

n

Q(m,0,4;7",0",4") = Z Z Tik)" log(mr) + (7ir) Bl (0) + (7ir) BL(1).

The terms involved in this decomposition, given in (5.24), (5.25) and (5.26), are now
detailed.

(a) the expectation of the data mixture part over the missing values given the available
information (i.e. the observed data and the indicator pattern), the class membership
and the current value of the parameters:

E},(6) = E [log(Fi(yis ) | 98, 20 = L6707
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(b) the expectation of the missing mechanism part over the missing values given the
available information, the class membership and the current value of the parameters:

Ei.(¢) =E [103;(P(Ci | yi, zie = 1390)) | y95, zip = 1aCi§‘9Ta¢}T] ;

(c) the conditional probability for an observation i to belong to the class k given the
available information and the current value of the parameters:

(Tik)r = ]P)(sz =1 | y?bsaci;ﬂ-raervdjr)'

Terms (a) and (b) require to integrate over the distribution P(y™® | 492 2 = 1,¢;507,9").
For Term (a), one has
P(yzmis) yiObSv Zik = 17 Ci; HT) 7/’r)
]P)(ylg)bs’ Zik = 1) Ci; 97’7 ¢T)
_ Pl | 4™,y zie = L )Py, 9™, zap = 1;67)
Syzmis P(CZ ‘ y;'nis7yzpbsvzik = 1;1/}T)P(y;'nis7y?bsvzik = 179r)dy;nls
(E.7)

P(y™s |y, 2 = 1,¢50",97) =

Term (c) corresponds to the conditional probability for an observation i to arise from the
kth mixture component with the current values of the model parameter. More particularly,
one has
P(zir = 1,40, ci; ", 07, 9")
P(yz(-’bs, ci 7r7’, 67‘, wr)

P(zie = 1,45, cisn”, 0", 9")

hot Plain = Lyg® e, 07, 47)
o Plaip = La)PW |z = L03)P(ci | 49,z = 1;,607,97)
X Plen = LB |z = L 0,)P(cs | 4™, zin = 1;67,97)
R 0P | S zik = 1507,97)

Shoa ThIn (e 05 P e | ™, 2 = 167, 47)

The quantity that can cause numerical difficulties is the probability P(c; | 39, zix = 1507, 97).

(2

(ran) =

(E.8)

E.3.1.1 Gaussian mixture for continuous data

The pdf fx(vi;0) = ¢(yi; ke, L) is assumed to be a Gaussian distribution with mean vector
ux and covariance matrix Y. First, let us detail the terms of the E-step. Term (a) is written
as follows:

E [los(6(uss s, T0)) | 98, 726 = 1,507 | = — [nlog(2m) + los((| 24 )]

1 _
- §E [(?Jz’ — ) F (Z0) T (i — ) | Y5 2 = 1,Cz';t9r,¢r] .
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This last term could be expressed using the commutativity and linearity of the trace function:

B[ (i — )T (507 i — ) | 95 2 = 1,550, 07|

=tr(E [(yi — ) (i — )| Y95, 2k = 1,61;9T,1/1r] (Zp)™H.

1

Finally note that only E [(yl — ) (i — )T | y9PS, zig = 1, ¢53 07, w’"] has to be calculated.

MNARz and MNARz’ models For the MNARz and MNARz’ models, the effect of
the missingness is only due to the class membership. Term (a) is the same for both models
but (b) and (c) differ. Let us first detail these terms.

e For Term (a), note that

P(yf™ | 0™, zin = 1,607, 07) = Py | 4™, 20 = 1507),

7

which makes the computation easy. Indeed, using (E.7),

P(y™s |y, 2z = 1,¢5507,4")

T plag) (= plaf, ) mP =, g2, 2 = 1:67)

- Sylmis H;‘l:1 P(O‘Zj)cij(l - P(O‘Zj))lic"jp(y;msvy?bsa zik = 1; (gr)dyzmis

B Py, o™, 2 = 1;607)
Syzmis P(yzmiS? y;')bsa Zig = 1; HT)d

s Py | 9™,z = 1;67),
i

since ]—[?:1 plag;) (1 — plag, j))l_%’ does not depend on ¥ and is simplified with

the numerator. The law of (y™* | yo

, zik = 1) is Gaussian. Noting that

(yi | zik = 1;,07)

bs,obs bs,mis
= << y?l?s > | zik = 1'0’") ~N ( (M?’ES)T > (2?’: Obb)T @?k-s -b)r
1 ? 1IS\7T ’ mis,obs mis,mis Y
(i (M?I; ) (Zik o) (Eik )
one obtains . . o
(o 8, 2ae = 1,07) ~ N (B (S5 (E.9)

with (f%®)" and (X2%)" the standard expression of the mean vector and covariance
matrix of a conditional Gaussian distribution (see for instance Anderson (2003)) detailed

as follows
~mis\r _ (, mis\r yrmis,obsyr [ 5r0bs,obsyr L obs _ (,,0bs\r E.10
()" = (pan™)" 4+ (") ((B5,77) vt = (™)) s (E.10)
Cmis\r __ mis,mis\r Emis,obs r Eobs,obs r -1 Zobs,mis r E.11
(5R°)" = ()" = (B ) (B 7)) ()" (E.11)
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Note also that we have

obs obs\T'(,,0bs obs obs obs\7T' (, m mis
(yiuk)(yiuk)T:(( — o) (Y™ = pg®) (Y9 — pep®) (yz. T3 ))

T b b T
( mis ’uims) ( obs 'u;) s) ( mis 'u;nls) ( 'u;nls)

Therefore, the expected value of each block for the current parameter value is

E [( obs N?bS)T(y;‘)bs obs) | yob Zik = 1: er] _ ( obs MlObS) ( obs M;)bs)
E [( obs u;)bs)T( Zrms mls) | yob 2k = 1: er] _ ( obs M?}?b) ((‘[’L;Télb)’f‘ u;réls)
E (" = ui™) " (0™ = ™) | 99 zan = 1,07 = (%) — wi™) " (BR°)" — wii®) + (SF)"

e For Term (b), P(¢; | ys, zi = 1;4) is independent of y, which implies

Ei.(¢) = log(P(c; | zix = 1;9))

_ { 4 cilog plag) + (1 — cij) log(1 — pag))  (MNARz)
2

?:1 cijlog p(auj) + (1 — ¢i5) log(1 — p(ag;)) (MNAR2?) (E.12)

e For Term (c), one first remark that
P(ei | 49", zik = 1;07,¢")

d
- H (cij = 11 42, 2 = 107,079 P(ci = 0 | 42, 2, = 1;07,97) 7.

In particular, for MNARz and MNARz/, by independence of y, one has

o obs _  __ 1.p7T ry __ o o _q.p7 o ,O(Ckk) (MNARZ)
Fles = ’Zm_l’e’W_P(C”_Hzm_l’e’w_{p(am (MNAR2)

Using (5.26), one obtains

O (gk) () ) [Ty p(af) ™ (1—p(af))' ™"
(rayr = S S e O
(e % (1eP*) " (Soe™ ) ) T19y plag;) 1 (1—p(ag;) '
Sy T (e (ugh )T, (22’,5’5*“5)7“)11?:1 plag,) i (1—p(ag ;) €0

(MNARz)

(MNARZY)
(E.13)

If p is the logistic distribution, the expression can be written more simply

1 ifcz‘j=1

d
b —1
(Tik)"ocmd(y; % O)) H (1 + exp( 5170‘23')) where 05 = { —1 otherwise.

Finally, the E-step and the M-step can be sketched as follows in the Gaussian mixture
case.
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E-step The E-step for Term (a) consists of computing for k = 1,..., K andi=1,...,n
. . : -1
(B = (i) + (S (™)) (8™ = ue))
(~§r];is)r _ (Z?;is,miS)r _ (E;’r];is,obS)r ((Z?};S’Obs)r>_l (E;)]:)s,miS)r
()" = (9™, (AR)")

obs,obs obs,mis
~ 0 0
roo__ [ 7
ik — mis,obs S\mis\ 7
0; (Eik )

1

Note that whenever the mixture covariance matrices are supposed diagonal then (iggs)r is
also a diagonal matrix. Term (c) also requires the computation of (7;;)" given in (E.13) for
k=1,....,.Kandi=1,...,n.

M-step The maximization of Qy(m,8;7",6") given in (5.22) leads to, for k =1,..., K,

1 n
M= D)

i=1
et _ i1 (Tik)" (Fk,i)"
g i (Ti)”
S [ (@) = et (@ar)” — T + 55 )]
i (Tik)"

Then, the maximization of the function Q.(¢;9") in 1 can be performed using a Newton

r+1 _
Y=

Raphson algorithm. For k = 1,..., K, it remains to fit a generalized linear model with the
binomial link function for the matrix (FMNAR#)r+1 (if the model is MNARz) or for the
matrices (J,?;INARZj );i%d (for the MNARz model) and by giving (7;)" as prior weights to
fit the process.
C1 1
(ARt | (B.14)
Cd 1
(jkl\j{INAsz>r+1 _ [C,j ‘ 1] (E15)

MNARy* models For missing scenarios which model the effect of the missingness
depending on the variable, the computations are more difficult.

obs obs

e Because of the dependence of y, P(y™® | 49, zix = 1,¢;;07,97) = P(y™S | ¢, 2 =
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1;0") does not hold anymore. Here, one has
( mis | yobb 2k = 1 ci;er ql)r)
Hh 1 p(ozkh + ﬂkhymls)cih(l - p(akh + /BkhyObS))l “nP(y mls,?/?bs Zip = 1,07)
Sym Hh L PGy + Brpyin®)em (1 — plagy, + By ) e P(y™e, yots, zip = 1;07)dy;™™

— Hh ,Cin=1 p(akh + ﬂkhymlsﬂp( is | yobs Zik = 1; Hr)
Synns Hh ein=1 p(akh + 5khym1s)]p( mis | yobs Zn = 1,07)dy mls~

(E.16)

which implies that Term (a) requires difficult computations if this distribution is not
classical.

e For Term (b), it is the same problem, since P(¢; | yi, zix = 1;%) is no longer independent
of y, then E (¢) requires a specific numerical integration. Using (E.16),

Jj=1

d
Ei (¢ =El (HP (s + Brjis) 7 (1 — plawg + Brjyig))' ) S W AN
d
N f Log(plans + By P | 45, 2ok = 1, i 07, o)y
+(1 —c”)log(l — plaws + Brejysy®))
where
Py |y, zin = 1,¢5507,0")

B p(akj + ﬁkjyglls)cij(l _ p(azj + ﬁkjyzr;ns))l—cij]p(ygns | yobs zik = 1; 07«)
Sy;?is p(o/,;j + Bkjygus)cij(l - p(a};j + Bkjygusnl_cijp(ygus ‘ yObS zir, = 1;07)dy gms

Therefore,

= St [ tonlotony+ By Lok PV OBUET LR Z L0
= pmis 7 7 Sym,s o( ag; + Bkj x)CiP(z | Yo, 2y = 1;07)dx 7V

+ (1 = cij) log(1 — plaw + Brysy™))
e There is no closed-form expression for Term (c).
]P)(C’L] | y;')bs7zik = 1;0T’w7’>

= J- . P ng ‘ y0b37yznj’18,21k = l;wT) IEIIS | yobs Zik = 1>dynns
g

+00
= cij J plag; + Byt o yi™; (R=)5, (SR)5)dyis™ + (1= eij) (1 — plagy + Biu57)
—0

(E.17)

Using (E.8), the probabilities (7;,)" can be deduced from Equation (E.17).
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Let us detail the difficulties for two particular cases, if p is logistic or probit.

e p is logistic: Equation (E.16) leads to none classical distribution because

: 1
Py | 49,z = Lei; 07,9 ]

- ¢(ymls’ (ﬂﬁéis)T, (~1}I’éis)r)
hvcihzl exp(_(QZh + 5£hy’gllls)) ! ’ v

Term (b) is

S(yy™; ()5, (S3°)7;)dyiy™

BT () Zd] C’f —log(1 + exp(—(ak; + Bryyiy™)))
N Jj=1 Zj vy 1+ exp(—(azj + Bl:]ygus»

— (1 —¢45) log(1 + exp(ag; + 5kjyf]bs)),

log(1+exp(—u))

which amounts to compute the Gaussian moment of =5 Fexp(—)

form to our knowledge.

, but it has no closed

Finally, Equation (E.17) does not have a closed form either because it requires the
computation of

+0o0 1 . . o )
e QWi ()5, (5355 dyig
f_w 15 exp(—(a, + B Vo ik ) (i) A

i.e. the computation of the Gaussian moment of

1
TFexp(—u) "

e p is Probit: One can prove (presented in Appended E.3.2.1) that the conditional
distribution (y™ | y?bs, zik = 1,¢;) is a truncated Gaussian, which makes possible the
computation of Term (a). Term (b) has no closed form to our knowledge

a log < A e_tht>
BL() Yo | S () (S ™
ic ; 1) yi;us 1 —+ exp(azj + szy%ns) 1) 1 J 7 77 ij

7j=1
Oékj-l-ﬁkjyfjbs 5
_(1_Cij)10g 1—j e_t dt].
—00

Equation (E.17) does not have a closed form either because it requires the computation

of )
A aijrﬁkjyij 7t2dt mis, (~mis\r (§ymis\r d mis
€ </5(y1;j (g )j,( ik )jj) Yij -

—0a0 —0a0

E.3.1.2 Latent class model for categorical data

For categorical data, we have ¢(y;; 0k) = H;'l:1 d(yij; Oj) = H;'l:1 Hﬁil(eﬁj)yz@.
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MNARz and MNAR2’ models Term (a) is
E [log(é(yipi)) | 98 22k = 167,07 = 3 Zyﬂ 3 Zlog o) (B18)
J,cij=00=1 Jicij=10=1

Term (b) is the same as in the Gaussian case given in (E.12). Finally, the EM algorithm can
be summarized as follows

E step: Fork=1,...,K and i =,...,n, compute
] Hfj 9L Vi TT4 .
o Tk 1 1je5=01le 1 kj) Hj 1 plag;)
ik — Vi

She 1™ 1, ¢ij=0 Hz 1(%])?4” H] 1 P(any)
(gfj,k)r = CZ](ek]) + (1 - Clj)yzp V] = 17 . '7d7 Vi = 1a o 7‘€_7

M step: The maximization of Qy(m,0;7",6") over (m,6) leads to, for k =1,..., K,

1 &
,Z;Jrl E Z(Tik)r

i=1
Z?:I(Tik)r(gfj,k)r
i1 (k)"

The M-step for ¢ consists of performing a GLM with a binomial link and has already been
given in detail in Appendix E.3.1.1 (see (E.29) and (E.30)).

(0L, Vi=1,. AV =1,....L

E.3.1.3 Combining Gaussian mixture and latent class model for mixed data

If the data are mixed (continuous and categorical), the formulas can be extended
straightforwardly if the continuous and the categorical variables are assumed to be
independent knowing the latent clusters.

E.3.2 SEM algorithm

The SEM algorithm consists on two steps iteratively proceeded as presented in Section
5.5.2. The key issue is to draw the missing data (y™S) 1 and z”l according to their
current conditional distribution P(y; mis . ] yg’bs,c,-;ﬂ’",m,z/}’”). By convenience, we use a
Gibbs sampling and simulate two easier probabilities recalled here

Z?"Jrl ~ [P)( | y:,Ci;WT,GT,@Z)T) and (y;mS)r—&-l ( ’ y0b87 r+1 0170T7¢T)

(2
where y7 = (y9b%, (y™)"). For the latter distribution, the membership & of 2] ™! is drawn from

the multinomial distribution with probabilities (P(z;x = 1|y, ¢;; 6", 1/17"));@,17”.7 x detailed as
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follows
P(zir = 1,9}, cis ", 0", ¢")
Py}, ci; ", 07, 4T)
Plei | yi, zin = LN)P(y; | 2k = 1507)P(25, = 1577)
e Plei |y, zin = LUm)P(y] | 2 = 1507 P(zip, = 1;77)
_ Plei i zie = LY")Py; |z = 1,07
S Ples |yl zan = 19m)P(YL | 2o = 1;07)m,

The conditional distribution of ((y™%)"+! | yobs, 27! = 1,¢;) has already been detailed
in Equation (E.16) and recalled here

P(‘sz =1 ‘ yf&z‘;ﬂrﬁrﬂﬂr) =

(E.19)

( mis | yobs’ :]jl -1 Ci;er7wr)
Hj,cij=1 P(C” =1 | ymls’y;)bs’ Z‘]:-l _ 1’QZ}T)P( mis ‘ yobs’ ;r]:—l _ 1 or )
]P)(C” =1 | ymls’y;)bs7 ;”k-‘rl =1 wr)P( mis | y0b57 Z“]:-l =1: gr)dymls

(E.20)
Syimis H]',Cig:l

E.3.2.1 Gaussian mixture for continuous data

First note that the probabilities of the multinomial distribution for drawing z; 1 given in
(E.19) can be easily computed for all cases.

P(zik =1 ’ y:,ci;ﬂr’er’¢r)
d y .
T Pley =1 yf, 2 = L") P(eyy = 0| g7, 2, = L") "0 (y]; g, Zp)my
- K d - .
Yot [joa Pleij = 1] yf, 25, = 1;9m) % P(cij = 0 | yf, 25, = L;97) = o(y7; i, 37 )7,

where ¢(y;; pi, 2x) is assumed to be a Gaussian distribution with mean vector pj and
covariance matrix ¥y, and P(c;; = 1 | yj, 2], = 1;9") is specified depending the MNAR
model and the distribution p. The only difficulty of the SE-step is thus to draw from the
distribution (y™ | yo, 20 = 1, ¢;).

In the sequel we detail the distribution (y™s | yoPs, 2 1~ 1,¢) and the M-step for v
depending the MNAR model.

MNARy* models The conditional distribution (y | 49, 2/*! = 1,¢;) depends on the
distribution p at hand. For the MNARy* models, we Wlll consider two classical distributions
for p: the logistic function and probit one.

e Logistic distribution: For the logistic function, the distribution given in (E.20) is
not classical and drawing yzmis from it seems complicated. Indeed, one has

( mis ‘ yobs7 ;“]:—l _ ]-,Ci;HT,wr)

1 : _
e ey O (ES) (BR5)),
j=11a:[ij—1 1+ exp(akj + Bkij DA Z Z
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where ()" and (X%)" are given in (E.10) and (E.11). We could use the
Sampling Importance Resampling (SIR) algorithm which simulates a realization
of (ymis | yobs 27+l = 1.¢;) with a known instrumental distribution (for example:
(ymis | yebs, 21 = 1)) and includes a re-sampling step. However, this algorithm may

be computationnaly costly.

Probit distribution: For the probit function, the distribution in (E.20) can be made
explicit by using a latent variable L;.

More particularly, let L; such that L; = of + Bjy; + €;, with ¢ ~ N(0g, Lgxa). Then,
¢; can be viewed as an indicator for whether this latent variable is positive, i.e. for all
j=1,...,d,

(E.21)

o 1 if Lij >0
‘=9 0 otherwise.

Thus, indeed to draw (y mls)?”rl and zf according to IP’( mis ,2:Z | Yo ciy ", 07, YT, we
draw LT (yis) +1 and 27+ according to P(L;, y™®, z; | 4?5, 577,07, 4") by using
a Gibbs sampling.

— First, we have to draw LZH according to P(. | ¥/, 2}, = 1,¢;;4"). One has

(L |yz7 Zik = =1 cz,wr)OC]P)(L“cl | yz’ zk =1 %)
OC]P)(CZ ’ Lg+17yi7zik = 1;wT) LT—H | ymls’yzobs7 zrk =1 W)
(

—~
.

)

oCP(ei | L 0P [y, 2y = 1347)

(i1) 1 b

= ]l{ci:1}m{L§+1>o} (LH ’ymlsayzo ® e = L9")
where we use that L;H is a function of ¥ yobs 2 = 1 in step (i). Step (ii) is

obtained by using (E.21). By abuse of notation, {¢; = 1} n {LIT! > 0} means that
forall j =1,...,d, {c;j =1} n {ijﬂ > 0}. Finally the conditional distribution
(Li |y}, 2, = 1,¢;) is a multivariate truncated Gaussian distribution denoted as
N;, as detailed here

(Li lyi, zip, = 1,¢) ~ Ny, + Bryi, Laxa; a, b), (E.22)

with @ € R? and b € R? the lower and upper bounds such that for all j = 1,...,d,

P 0 if Cij = 1,
7] —o otherwise.

b — +0o0 if cij =1,
77010 otherwise.
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— Secondly, we draw the membership k of z{“ from the multinomial distribution
with probabilities, for all k = 1,..., K detailed as follows

P(zir = 1| LT ) ein”, 07, 97)
P(zi = 1,LZ+1,y§,ci;7TT,9T,1/J”)
kK:1 Pz, = 1,L£H,y§",c,~;7rr,0’”,1/ﬂ")
P(L7 2 = 1,0, ey " )Pz = Ly} cim”, 07, 407)
T PO i = 1,7 e )Pz = 1,y i, 07, 4r)

The part involving P(z;, = 1,4y}, ¢i; 7", 0",4") is given in (E.19) and P(L;+1|zik =
Ly, c;;7") is only the density of the multivariate truncated Gaussian distribution
described in (E 22) evaluated in L7

— Finally, y! ™" is drawn according to P(. |L’"+1, :,jl =1,y ¢;;0",4"). One has

IP; mls | L’l‘+1, Z"k+1 =1 yobs Ci;er,wr)

OCP(CHLTH | s yobs L 1T Py | 0P LTl = 1:97)
(e | TEFL i, % = Ty B(LY Y |, e, o = LR | g 2 = 10)

ocP(c; | LTH1p \P(LITL | s g0 2Tl = 157 )Py | yobs 27+ = 1. 07)

oCP(LTHL | ymis yobs pr+l _ 1 gryp(ymis | yobs LTl _ 1 gn)

Yet, one has

P(LrJrl ‘ ymls y;)bs 7"]:1 _ 1¢T)OC 6_%[(LT+1 (%‘Fﬁkym“)) (L:+1_(a2+62yi))]
) )y %5

( rnls ‘ yobs T,:1 _ 1 HT) %[(y;nis (ﬂ%is)r+l)T((i{.f,‘€is)T)71(y?“is—(ﬂlr.r,‘cis)”rl)]
? z

)

with 2205 and (X20)" given in (E.9).
Finally combining these two equtions one obtains

( mis | Lr+1, ZrkJrl -1 yobs ) N(MZEM ESEM)7

where
S = () + (BT Ry
:U’szEM EZSEM [((i?}fls)r) 1:“';218 + (( mls)T)T(L?liS)r+1 _ ((Bmls)r) ( rms)r:l7

with (8M)" (resp. (L)1 and (af™®)") the vector B (vesp. (L;)"*! and (ay)")
restricted to the coordinates j € Y.

Finally, for fully describing the SEM-algorithm given in Algorithm 4, in the M-step, 9" is
computed using a GLM with a binomial link function for a matrix depending on the MNAR
model. In particular,
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e For MNARy, the coefficient obtained with a GLM for the matrix (”;‘-[?/H\IARy)”Jrl are g

and g7, .. B0t with
cill vt 0 ... 0
(HMNARy)r1 _ 0:2 1 0 Z'J:TQH - 0 (5.23)
cjd 1 0 O‘ . y.TdJrl

e For MNARy¥, the coefficient obtained with a GLM for the matrix (HII:/;NARyk)TH is

+1 +1 1
ag and B, ..., B, -, By with
_ +1 i}
(CU1)u,z;Tl:1 1 (y:d )u,z;flzl 0 ce 0
MNARy" ' , +1
(,ij Y )r+1 — (Cul)u,z;}lzl 1 0 (y;l )u,z;j{(l:l 0
1
_(CUd)u,zC};l:l 1 O 0 (yz‘g )u,zz;}l:l_
(E.24)
e For MNARyz, the coefficients obtained with a GLM for the matrix (HMNARYZ)r+1 are
{H, cee 2“ and a{“, ces ,a?l, with
1 1 1
c1 y.r1+ qu .. 0 Z_Tlil ... z%:l
co| 0 Yy ... 0 2 N
(HMNARyzyr+l _ | . _ (E.25)
+1 +1 +1
cqgl| O 0 ...y 2 . 2F

e For MNARyz/, the coefficients obtained with a GLM for the matrix (HMNARijY“

J
are 6}““, a{jl, ... ,a}”é}l, with
MNARyz9 \r+1 4 +1 +1 +1
(H; vyt = e ‘ yio2 s ] (E.26)

e For MNARy"z, the coefficients obtained with a GLM for the matrix (”;’-Lll,zﬂ\m‘RykZ)7”rl

are ﬁ;fl, e ,BZ:{I,&};H, with
ca |yt 0 R 0 1
k ci| 0 ydt oo 0 1
(HAINAR 2y N 1 (E.27)
cud| O 0 ..oyl wrtin

267



Appendixz E. Appendiz of Chapter 5 E.3. Detailed algorithms

, .
e For MNARy" 2/, the coefficients obtained with a GLM for the matrix (H%NAR@/ #yr+l
are f;, o, with

MNARy*2/ \p4+1 _ . r+1
(M ) = [ ‘ Yuj 1]u,zf£1:1

(E.28)

e For MNARz, the coefficients obtained with a GLM for the matrix (HMNARZ)™+1 are

ai,...,ar, with
B r+1 r+17
C11 le e le
r+1 r+1
ci1|%1 ... ZK Cnl an an
(HMNARz)r+1 _ =| : : : Co. (E.29)
r+1 r+1
Cdl <1 ... 2K Cld | %11 e K
r+1 r+1
_Cnd Znl s ZpK |

e For MNARZ/, the coefficients obtained with a GLM for the matrix (7—[?41\”“3‘23.)’”r1 are
A1, 0Ky, with

(H?ANARZj)TJrl = [c,j ‘ zﬁ“ z?";(rl] (E.30)

MNAR:z and MNAR2’ models For the MNARz and MNARz/ models, the effect of
the missingness is only due to the class membership. We have already proved in Appendix
E.3.1.1 that

Py | y9™s, 2F s cis 07, 47) = P(yf™ | 49, 215 07),

(2

and that this conditional distribution is Gaussian given in (E.9). The M-step for ¥ has been
specified in the previous paragraph with (E.29) and (E.30).

E.3.2.2 Latent class model for categorical data

For categorical data, we have ¢(y;; 0;) = H?Zl O(Yij; Orj) = H?Zl Hﬁil(eij)yfj.

MNARz and MNAR2/ models For drawing from the conditional distribution (y™® |

yfbs, z:,:r 1 ), by independence of the features conditionally to the membership, we can
draw for j =1,...,d y;-?is = (( g‘is)l, e (yl‘-?is)l.?') from the conditional distribution (yfjliS |
yfbs, z:,:r 1= 1). This latter is a multinomial distribution with probabilities (9£j)g:1,...7gj.
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