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Context

• Huge amount of data is available.

• Labeling the data is costly and time-consuming.

How to leverage from the unlabeled data?
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SSL is a missing data problem

• Unlabeled data are seen as observations having a missing label.

• r ∈ {0, 1}n indicates where are the missing values in the label y

∀i ∈ {1, . . . , n}, ri =
{

1 if yi is observed
0 otherwise.

• Remark: y is partially missing, but r is fully observed.

• r is sometimes informative: when some classes are popular

and other classes are not...
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Missing-data mechanism

• Not-informative labels (MCAR): the process that causes the lack of

data is totally independent from the data values.

Not-informative labels: one can ignore the mechanism.

• Informative labels (MNAR): People are more inclined to label images
of some classes which are easy to recognize.

Informative labels: one should consider the mechanism.
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Figure: Artificial missing labels in CIFAR10 datasets.
Left: MCAR labels. Right: MNAR labels.
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Issues raised by informative labels

1. How to consider the mechanism ?

• model the conditional distribution L(R|X ,Y ) (Bernoulli distribution)

• take it implicitly into account: [Mohan et al., 2018] (Estimation in linear
models) and [Hu et al., 2021] (SSL)

2. Are the estimators still identifiable ?
Not always : 2 equal observed distributions can lead to different parameters of

the data distribution.

3. How to adapt the existing methods ?

4. How to test the assumption on the mechanism ?
Discussions with experts are very important. Sometimes, it is possible to do it

automatically.
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SSL setting

n i.i.d. samples D = {(xi , yi )}ni=1

• xi ∈ Rd the features (e.g. images)

• yi ∈ C = {0, . . . ,K} the labels

We want to estimate θ, parameter of p(y |x ; θ)
In practice, p(y |x ; θ) can be a neural network.

What we observe

• nℓ labeled data: Dℓ = {(xi , yi}nℓi=1

• nu unlabeled data: Du = {(xi )}ni=nℓ+1

Typically: nℓ << nu.

How to use all the data to estimate θ?
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Reminder in supervised learning

[Supervised learning]

• Objective: learn a predictive model p(y |x ; θ).
• The oracle estimate is the minimizer of the theoretical risk:

θ⋆ = argminθ∈Θ R(θ) := E(x,y)∼p(x,y)[L(θ; x , y)],

with L the loss function (measures the error committed by the model to

retrieve y).

The theoretical risk is always intractable.

• Minimize the empirical risk:

θ̂ = argminθ∈Θ R̂(θ) :=
1

n

n∑
i=1

L(θ; xi , yi ).

The empirical risk is still unobserved in presence of missing labels.
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Classical SSL estimator (for MCAR labels)

[Semi-supervised learning]

1) Complete-case: learning with labeled data
Minimize the complete-case empirical risk:

R̂CC(θ) :=
1

nℓ

n∑
i=1

riL(θ; xi , yi )︸ ︷︷ ︸
only the labeled data are used

2) Incorporating the unlabeled data

R̂SSL(θ) :=
1

nℓ

n∑
i=1

riL(θ; xi , yi )︸ ︷︷ ︸
term on labeled data

+
λ

nu

n∑
i=1

(1− ri )H(θ; xi )︸ ︷︷ ︸
term on unlabeled data

λ > 0: regularization parameter

H: surrogate of L
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Choice of the SSL regularization

High-confident imputations for the unlabeled data

• Shannon entropy [Grandvalet and Bengio, 2004]:

H(θ; x) = −
∑
y

p(y |x ; θ) log(p(y |x ; θ)).

• Pseudo-labels [Rizve et al., 2021]:

• choose the class with the maximum predicted probability

c ∈ argmaxyp(y |x ; θ)

• only the pseudo-labels which have a maximum predicted probability

larger than a predefined threshold τ are used as target

H(θ; x) = − log p(c |x : θ)1maxy p(y |x ;θ)>τ

Robustness of the model to data augmentation of the features
Recent state-of-the-art method: Fixmatch [Sohn et al., ] and many
extensions.
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Is SSL a promising approach?

100 labeled images per class for CIFAR10

Error with supervised learning (neural network): 12%
Error using a large unlabeled dataset (FixMatch SSL): 2,5%

But...

• Popular deep SSL techniques are generally not safe, meaning that
their theoretical guarantees are not stronger than the complete case
baseline [Schmutz et al., 2022].

• Performances of SSL classical techniques are degraded when
the labeled and unlabeled set have different distributions
(MNAR) [Oliver et al., ].

And also...

• Without data augmentation, the gap in performance between using SSL
and using only labeled data is smaller.

• Many papers perform not realistic numerical experiments (e.g. too large
complete validation set, costly hypertunning parameters) [Oliver et al., ].
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Safe MCAR SSL

Get a debiased estimate of the theoretical risk for MCAR labels
[Schmutz et al., 2022]:

R̂SSL(θ) :=
1

nℓ

n∑
i=1

riL(θ; xi , yi )︸ ︷︷ ︸
term on labeled data

+
λ

nu

n∑
i=1

(1− ri )H(θ; xi )︸ ︷︷ ︸
term on unlabeled data

−
λ

nℓ

n∑
i=1

riH(θ; xi )︸ ︷︷ ︸
to get unbiased estimate

λ > 0: regularization parameter

H: surrogate of L
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Towards realistic scenarios

• Class-imbalanced SSL / MCAR:
[Kim et al., , Wei et al., , Lee et al., ].

• Different class distribution /MNAR : [Hu et al., 2022]

• Class distribution mismatch / MNAR:
(a) [Guo et al., , Cao et al., ] or (b) [Chen et al., ]

• Class & feature distribution mismatch: (c) [Huang et al., ]

Assumption Labeled data Unlabeled data

(a) Cℓ ⊂ Cu

Pigeon Blackbird

(b) Cℓ ̸= Cu

Pigeon Blackbird Parakeet

(c) Cℓ ̸= Cu

pℓ(x |y) ̸= pu(x |y) Pigeon Blackbird Parakeet
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Our assumptions

A1. The labels sets are identical: Cℓ = Cu = C = {0, . . . ,K}.
It implies that we can not have a ”new” class in the unlabeled dataset.

A2. The labels are informative (self-masked MNAR): r ⊥⊥ x |y .
Our model can reflect the classes popularity.

x y

r

Figure: Structural causal graph of
the self-masked mechanism.
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Figure: CIFAR 10 dataset with 10%
labeled data (in total).
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Our proposal

• Estimate the mechanism.
• Prove the identifiability of the parameters.

Proposition: identifiability
Under Assumptions A2. (self-masked MNAR), identifiability of θ for the marginal
distribution p(y |x ; θ) and completness (features has a larger support than the la-
bels), the parameters (θ, ϕ) are identifiable.

[Miao et al., 2015]

• Debiase the classical estimator to handle informative labels.
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Debiased estimator (for MNAR labels)

1) Complete-case: learning with labeled data
Weight the labeled data by the inverse of the probability (IPW) of being
observed.

R̂CC,MNAR(θ) :=
1

n

n∑
i=1

riL(θ; xi , yi )

ϕ̂yi

,

with ϕ̂yi = P(ri = 1|yi ).

2) Incorporating the unlabeled data

R̂SSL,MNAR(θ) :=
1

n

n∑
i=1

riL(θ; xi , yi )

ϕ̂yi

+
λ

n

(
n∑

i=1

(1− ri )H(θ; xi )−
n∑

i=1

ri
(1− ϕ̂yi )

ϕ̂yi

H(θ; xi )

)
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Estimation of the mechanism

• Maximum likelihood estimator (MLE):

ℓ(θ, ϕ) ∝ −
1

n

nℓ∑
i=1

log p(yi |xi ; θ)ϕyi −
1

n

n∑
i=nℓ+1

log
∑
ỹ∈C

p(ỹ |xi ; θ)(1− ϕỹ )

• Method of moments estimator (MM):

ϕ̂y =

∑n
i=1 1{r=1,yi=y}

n︸ ︷︷ ︸
numbers of labeled data in class y

1

p̂(y)

• Implicitly taking into account the MNAR nature of the data
[Hu et al., 2021].
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Naive estimators in specific cases

• We know that the class are balanced:

ϕ̂y =

∑n
i=1 1{r=1,yi=y}

n

1

K
,

where K is the number of classes.

• We know the class probabilities p(y):

• we have data in the general population (e.g. the rate of nodule with
such a malignancy level in the general population).

ϕ̂y =

∑n
i=1 1{r=1,yi=y}

n

1

p(y)
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Numerical experiment

Method Loss Acc

MLE 1.312 63.26
MM 0.3643 92.17

Implicit meca 0.4885 90.54
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Figure: CIFAR10 with informative
missing values and unbalanced
classes (18% labeled data in total).
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Conclusion

Surprising facts:

• classical method using MLE for estimation of ϕ fails in many cases.

• ”Simple” missing-data setting (MNAR but only one variable is
missing!) but complex data (images; need of using CNN).

Continued work:

• Apply the method to a real medical dataset (Collaboration with
Olivier Humbert, Pr CHU Nice).

• Propose a likelihood ratio test to verify the assumption on the
mechanism.

Thanks for your attention !
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Visit our website !

https://rmisstastic.netlify.app/

Imke Mayer, Julie Josse, Nicholas Tierney and Nathalie Vialaneix and
many other contributors
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Very closed work: [Hu et al., 2022]

• classical: θ̂ = argmaxθp(y |x ; θ).
• For MNAR: L(y |x , r = 1)̸=L(y |x , r = 0)

• Proposition: consider the regression x |y and assume x ⊥⊥ r |y
• θ̂ = argmaxθp(x |y ; θ)
• L(x |y , r = 1)=L(x |y , r = 0)
• argmaxθp(x |y ; θ) = argmaxθp(y |x ; θ) 1

s(x,y) .

• s(x , y) depends on the unknown class probabilities p(y).
• p̂(y) = 1

n

∑n
i=1 p(yi |xi ; θ̂) (as p(y) =

∫
p(y |x ; θ)p(x)dx).

• Double-robustness property ever θ or s(x , y) can be biased, the
theoretical risk will be unbiased.

Some remarks

• The gradient over θ is not propagated though the weight s(x , y) while
θ is used to compute it.

• Double-robust: if s(x , y) is biased, the proposition requires perfect im-
putations for unlabeled data.
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How to estimate the mechanism?

Our first idea was to use the maximum likelihood estimate.

Maximum Likelihood Estimate

• Mechanism: ϕyi = P(ri = 1|yi )
• ℓ(θ, ϕ) = − 1

n

∑n
i=1 log p(xi , yi , ri ; θ, ϕ) untractable.

• Integrate over the missing values: observed log-likelihood.

ℓ(θ, ϕ) ∝ −
1

n

nℓ∑
i=1

log p(yi |xi ; θ)ϕyi −
1

n

n∑
i=nℓ+1

log
∑
ỹ∈C

p(ỹ |xi ; θ)(1− ϕỹ )

θ̂, ϕ̂ = argminθ∈Θ,ϕ∈Φ ℓ(θ, ϕ).

Advantages:

• Convexity of the observed log-likelihood in ϕ ∈ Φ for a fixed θ ∈ Θ.

• Possible use of a prior on ϕ (with regularization of the log-likelihood)

• Likelihood ratio test is easily derived in practice.
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Choice of the SSL regularization
2) Robustness of the model to data augmentation of the features
Recent state-of-the-art method: Fixmatch [Sohn et al., ] and many
extensions.

• compute a pseudo-labels predicted using a weakly-augmented version of x .

• minimize the likelihood with predictions of the model on a
strongly-augmented version of x .

Figure: Credits [Sohn et al., ]
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