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Context

• Large-scale data analysis: large number of observations n, large di-
mension of the observations p.

• Missing data occurs more frequently. E.g. in clinical data: failure
of the measuring device, no time to measure in emergency situations,
aggregating datasets from multiple hospitals, etc.

• Stochastic gradient descent (SGD): key role in machine learning.

Missing data

•Problem: Missing values in the covariates Xk:.

•Dk: ∈ {0, 1}d, Dkj =


0 if the var. j of obs. k missing
1 otherwise.

• Heterogeneous MCAR data: 6= missing proba. for each
covariate. D = (δkj) with δkj ∼ B(pj).

•Access to XNA
k: ∈ (R ∪ {NA})d instead of Xk:

XNA
k: := Xk: �Dk: + NA� (1d −Dk:),

Setting: linear regression with missing covariates

(XNA
k: , yk)) ∈ Rd × R i.i.d. observations.

yk = (XNA
k: )Tβ? + εk,

parametrized by β? ∈ Rd, with a noise term εk ∈ R.

How to perform linear regression with missing covariates
that handle large-scale or streaming data?

Existing works in linear models

•Expectation Maximization algorithm [1].
7 parametric (Gaussian) assumption for the covariates.

•Naive imputation e.g. by the mean [2].
7 Bias in the estimate.

• Imputing naively by 0 and modifying SGD to account for the
imputation error ([3]), also in [4], for homogeneous MCAR values.
⇒Our proposal: debiased averaged SGD, better rate of convergence.

Methodology

• Imputing the missing values by 0: X̃k: = XNA
k: �Dk: = Xk: �Dk:.

•Using a debiased gradient for the averaged SGD:
g̃k(βk−1) = P−1X̃k:

X̃T
k:P
−1βk−1 − yk

−(I−P )P−2diag
X̃k:X̃

T
k:

 βk−1,

where P = diag
(pj)j∈{1,...,d}

 ∈ Rd×d.

• Averaged iterates: β̄k = 1
k+1Σβi.

Theoretical results

•Goal: establish a convergence rate.
•Assumptions: (Xk:, yk) ∈ Rd × R i.i.d., E[‖Xk:‖2] and E[y2

k] finite, H :=
E(Xk:,yk)[Xk:X

T
k:] invertible, Fk = σ(X1:, y1, D1: . . . , Xk:, yk, Dk:).

Lemma 2: structured noise induced by NA

g̃k(β?) is Fk−measurable and ∀k ≥ 0,
•E[g̃k(β?) | Fk−1] = 0 a.s., E[‖g̃k(β?)‖2 | Fk−1] is a.s. finite.
•E[g̃k(β?)g̃k(β?)T ] 4 C(β?) = c(β?)H a.s..

Lemma 3: (g̃k(β?))k≥0 a.s. co-coercive

•For any k ≥ 0, g̃k is Lk,D-Lipschitz.
•There exists a primitive function f̃k which is a.s. convex.

Theorem 1: convergence rate, online streaming

Assume that for any k, ‖Xk:‖ ≤ γ a.s. for some γ > 0. For any
constant step-size α ≤ 1

2L and for any k ≥ 0, one has:

E
R

β̄k
−R(β?)

 ≤ 1
2k
·



√√√√√c(β?)d
1−
√
αL︸ ︷︷ ︸

variance term

+ ‖β0 − β?‖√
α︸ ︷︷ ︸

bias term
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,

•L := supk,D Lipschitz constants of g̃k.
• pm = minj=1,...d pj minimal probability to be observed.

• c(β?) =
classical term︷ ︸︸ ︷

Var(εk)
p2
m

+

multiplicative noise (induced by naive imputation)︷ ︸︸ ︷
(2 + 5pm)(1− pm)

p3
m

 γ
2‖β?‖2

︸ ︷︷ ︸
increasing with the missing values rate

.

XOptimal rate for least-squares regression: O(k−1).
X In the complete case (pm = 1): same bound as Bach and Moulines [5].

Additional results

• Finite-sample setting: n is fixed.
• True risk: same convergence rate holds for only one epoch.

7 if we use the data more than once: bias in the gradient.
• Empirical risk (open issue): βn? = arg minβ∈Rd

Rn(β) := 1
nΣfi(β)

.
7 data used several times or non-uniform sampling.

• Using estimated missing probabilities (p̂j)j in our algorithm instead
of (pj)j preserves the same order of convergence rate O(k−1).

• Ridge Regression: β → R(β) + λ‖β‖2 is 2λ-strongly convex: no change
for the debiased gradient, convergence rate of O((λk)−1).

Consequences in practice

•Before collecting data, fewer complete obs. is better than
more incomplete ones, e.g. variance bound for 200 incomplete
obs. (50% NA) is twice as large as for 100 complete obs.

•After collecting data with NA, obs. containing NA should
not be removed: the upper-bound is pd−3 smaller than the lower
bound of any algorithm relying only on the complete observations.

Experiments on synthetic data

•Xi:
i.i.d.∼ N (0,Σ), where Σ generated randomly with decreasing

eigenvalues, yi = Xi:β + εi, for β fixed and εi ∼ N (0, 1).
•d = 10, 30% missing values, L oracle value.

• AvSGD: our method,
constant step size α =
1

2L.
• SGD: [3], decreasing
step size αk = 1√

k+1.

• SGD_cst [3], constant
step size α = 1

2L. Figure 1: Empirical excess risk (Rn(βk)−Rn(β?)).

Experiments on real data

• Complete dataset: 81 quant. features, 21263 superconductors.
• Introduction of 30% of
heterogeneous MCAR
values.

•Training/test split, with
no NA in the test set.

• ŷn+1 = XT
n+1β̂,

with β̂ computed on
the training set, with
AvSGD or with a
two-steps procedure
Mean+AvSGD.

Figure 2:Prediction error ‖ŷ − y‖2/‖y‖2.

⇒Further research: MAR values, GLM models.
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