Debiasing Stochastic Gradient Descent to handle missing values
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Context Theoretical results Consequences in practice
- Large-scale data analysis: large number of observations n, large di- - Goal: establish a convergence rate. - Before collecting data, fewer complete obs. is better than
mension of the observations p. - Assumptions: (Xj.,yp) € R? x R i.id., ol X/«:HZ] and “3[%%] finite, H := more incomplete ones, e.g. variance bound for 200 incomplete
- Missing data occurs more frequently. E.g. in clinical data: failure (X)X - XiL] invertible, F, = o (X1, y1, D1. ..., Xpy Yi, Di-). obs. (50% NA) is twice as large as for 100 complete obs.
of the measuring device, no time to measure in emergency situations, « After collecting data with NA, obs. containing NA should
ageregating datasets from multiple hospitals, etc. Lemma 2: structured noise induced by NA not be removed: the upper-bound is p? =3 smaller than the lower

- Stochastic gradient descent (SGD): key role in machine learning. bound of any algorithm relying only on the complete observations.

: gr(B) is Fr—measurable and Vk > 0,
Missing data L L . . ] '
g (B | Feorl = 0 a.s., Bl||an( B2 | Foorl is a.s. finite. Experiments on synthetic data

(8% g1(8)] < C(B*) = c(B)H a.s..

- Problem: Missing values in the covariates X;...

o Dk; - {O, 1}d, ij —

- X, RN (0,32), where > generated randomly with decreasing

0 if the var. § of obs. k missing eigenvalues, y; = X;.0 + ¢, for § fixed and ¢; ~ N(0,1).

1 otherwise. Lemma 3: (§i(6%))r>0 a.s. co-coercive 10, 30% cissine values. I. oracle val
» Heterogeneous MICAR data: = missing proba. for each — Y OU/0 TLISSIG VAlles, L OTatic Vatle,
: o | : .y | . ~ . T . n =103, 100 passes n=10° 1 pass
covariate. D = (0g;) with  dx; ~ B(p,). For any k > 0, gk. zs. Z.th szs.chzt,f. - . AvSGD: our method |
. Access to XM e (R U {NAV)? instead of X, o There exists a primitive function f;. which is a.s. convex. constant step size o = = .
| 1 & &
X}EA = X © D +NA GO (1d — Dk;>, . . oL I I
Theorem 1: convergence rate, online streaming - SGD: [3|, decreasing % 2,
Setting: linear regression with missing covariates step size o = . | |
g g 3 Assume that for any k, || Xi| < v a.s. for some v > 0. For any .SGD_cst [3 \/ck(jristant
d % - constant step-size a < .- and for any k > 0, one has: - | ‘ ‘
) € R x Riid. Obser;itl;ms' 2L step slze o = ;. Figure 1: Empirical excess risk (R, (8r) — Rn(6%)).
*
k= (Xp")" 57 + €, <(B)d B =5
parametrized by 5* € R? with a noise term ¢, € R. 1 —+val Vo Experiments on real data

variance term bias term

How to perform linear regression with missing covariates o L= supy, p Lipschitz constants of gp.

. - . - Complete dataset: 81 quant. features, 21263 superconductors.
that handle large-scale or streaming data? * D = Milj—y g p; munimal probability to be observed.

o ) ) classical term  Multiplicative noise (induced by naive imputation) » Introduction of 307% of . ‘
Existing works in linear models Var (e ) 21 5pm) (1 = p) heterogenecous ~ MCAR |
o C(ﬁ*) _ 4 m m ’VZHﬁ*HZ . | T
P2 3 values. =
- Expectation Maximization algorithm [1]. increasing with the missing values rate » Training/test split, with &
. 2 0.3 ¢ Regularization
X parametric (Gaussian) assumption for the covariates. no NA in theAtest set. : ﬁ —
- Naive imputation e.g. by the mean [2]. v Optimal rate for least-squares regression: O(k™1). * Un+1 = :Xg+167 031 - i
X Bias in the estimate. v In the complete case (p,, = 1): same bound as Bach and Moulines [5]. with 5. .computed Ol os- @
- Imputing naively by 0 and modifying SGD to account for the Additional r It the training set,. with 026 -
imputation error (|3]), also in [4], for homogeneous MCAR values. oAl TEstiLs AvSGD or Wlthd d AVSGD complete  AVSGD  Mean+AvSGD
two-steps rocedure . - X
— Our proposal: debiased averaged SGD, better rate of convergence. | b b Figure 2:Prediction error [|§ — y||*/ly||*
. Finite-sample setting: n is fixed. Mean+AvSGD.
Methodolog - True risk: same convergence rate holds for only one epoch. — Further research: MAR values. GLM models.
Y X it we use the data more than once: bias in the gradient. |
- Tmputing the missing values by 0: Xj. = XM © Dy = X). @ Dy, - Empirical risk (open issue): 7 = arg mingege {R,(8) := 1S fi(B)). References

. Using a debiased gradient for the averaged SGD: X data used several times or non-uniform sampling.

Gk(Be—1) = P X [XLP ' By — yi)— (1= P) P *diag [ X4 X 1) Bi-1,

Stochastic gradient descent for linear systems with missing
data.
Maximum likelihood from incomplete data via the em 4] Po-Ling Loh and Martin J Wainwright.

. . . . eq e, o ~ . . . [1] A. P Dempster, N. M Laird, and D. B Rubin.
- Using estimated missing probabilities (p,); in our algorithm instead

of (p;); preserves the same order of convergence rate O(k™).

algorithm. High-dimensional regression with noisy and missing data:

Provable guarantees with non-convexity.

2] R. JA Little and D. B Rubin.

- Ridge Regression: 8 — R(3)+ M||3]|? is 2\-strongly convex: no change Suaiines] syt i ety e 5] F. Bach and E. Moulines

Non-strongly-convex smooth stochastic approximation with

where P = diag ((p))jef1...a1) € R4
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® Averaged lterateS. 6k — /{——HZBZ for the deblased gradlent7 Convergence rate Of O(()\k) 1). 3] Anna Ma and Deanna Needell. convergence rate o (1/n).




