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Motivation: large-scale incomplete data

• Large-scaling: large n (number of observations), large d
(dimension of the observations)
# Stochastic / online learning algorithms.

• Incompleteness for many reasons: delete observations with
NA → keep only 5% of the rows.
# Simple algorithmic solution?

Traumabase: 250 var/ 15 000 patients/ 15 hospitals
Center Age Sex Weight Height Heart rate Lactates

Beaujon 54 m 85 NA NA NA
Lille 33 m 80 1.8 180 4.8
Pitie 26 m NA NA NA 3.9

Beaujon 63 m 80 1.8 190 1.66
Pitie 30 w NA NA NA NA

NA: Not Available.
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Linear regression model

• (Xi :, yi )i≥1 ∈ Rd × R i.i.d. observations

yi = XT
i : β

? + εi ,

parametrized by β? ∈ Rd , with a noise term εi ∈ R.
• Loss function: fi (β) = (〈Xi :, β〉 − yi )

2 /2.
• True risk minimization:

β? = arg min
β∈Rd

{
R(β) := E(Xi :,yi ) [fi (β)]

}
• Stochastic gradient method.

• At the heart of Machine Learning.
• Especially useful in high dimension.
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Objective

Challenges
• Large-scaling: large number of observations, large d .
• Incomplete data: missing covariates, (Xi :)’s partially known.
• Online-setting: the data come as it goes along.

How to adapt algorithms to the missing data case?
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Optimization without missing values
Stochastic gradient descent

• SGD: using unbiased estimates of ∇R(βk−1).

βk = βk−1 − αgk(βk−1)

where α is the step-size and gk(βk−1) = ∇fk(βk−1).

E [gk(βk−1)|σ(X1:, y1, . . . ,Xk−1:, yk−1)] = ∇R(βk−1),

• Averaged SGD: using the Polyak-Ruppert averaged iterates.

β̄k =
1

k + 1

k∑
i=0

βi

X It scales with large data

2 challenges
• Obtaining unbiased stochastic gradients with missing data?
• Deriving rates of convergence?
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Missing values setting
Formalism

• Missing-data pattern (or mask) D: Di : ∈ {0, 1}d , such that

Dij =

{
0 if the (i , j)-entry is missing
1 otherwise.

• Access to XNA
i : ∈ (R ∪ {NA})d instead of Xi :

XNA
i : := Xi : � Di : + NA(1d − Di :),

� element-wise product, 1d = (1 . . . 1)T ∈ Rd , NA× 0 = 0, NA× 1 = NA.
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Missing values setting
Heterogeneous MCAR

• Heterogeneous Missing Completely At Random setting
(MCAR) → Bernoulli mask

D = (δij)1≤i≤n,1≤j≤d with δij ∼ B(pj),

with 1− pj the probability that the j-th covariate is missing.

X different missing probability for each covariate

Heterogeneous case:
p1 = 0.5, p2 = 0.67, p3 = 0.83, p4 = 0.33, p5 = 0.92.

Homogeneous case: p = 0.65.
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Dealing with missing values
Existing works

Aim: estimate parameters of a linear regression.

• EM algorithma: maximization of the observed likelihood.
7 strong assumption on the data distribution
7 computationally costly, does not scale with large data.
7 not simple to establish, no many implementations.

• Simple imputation: mean imputation, performing regression.
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aArthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm”. In: Journal of the Royal Statistical
Society: Series B (Methodological) 39.1 (1977), pp. 1–22.
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Dealing with missing values
Existing works

Aim: estimate parameters of a linear regression.

• EM algorithma: maximization of the observed likelihood.
7 strong assumption on the data distribution
7 computationally costly, does not scale with large data.
7 not simple to establish, no many implementations.

• Simple imputation: mean imputation, performing regression.
7 bias in the estimates, correlation between the variables

overestimated.
• (Multiple) imputation: miceb

7 not online, difficult to establish for Ridge regression.

aDempster, Laird, and Rubin, “Maximum likelihood from incomplete data via the
EM algorithm”.

bBuuren and Groothuis-Oudshoorn, “mice: Multivariate imputation by chained
equations in R”.
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Dealing with missing values
Naive imputation and debiasing

Naive imputation and debiasing
• Imputing naively by 0.
• Modifying usual algorithms to account for the imputation error.

• Dantzig selector2.
• Lasso3.
• SGD4.

2Mathieu Rosenbaum, Alexandre B Tsybakov, et al. “Sparse recovery under matrix
uncertainty”. In: The Annals of Statistics 38.5 (2010), pp. 2620–2651.

3Po-Ling Loh and Martin J Wainwright. “High-dimensional regression with noisy
and missing data: Provable guarantees with non-convexity”. In: Advances in Neural
Information Processing Systems. 2011, pp. 2726–2734.

4Anna Ma and Deanna Needell. “Stochastic Gradient Descent for Linear Systems
with Missing Data”. In: arXiv preprint arXiv:1702.07098 (2017).
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Dealing with missing values
Our strategy inspired by Ma et Needell

Online-streaming: for a new observation (XNA
k: , yk)

• Imputing the missing values by 0.

X̃k: = XNA
k: � Dk: = Xk: � Dk: imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1)
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• Imputing the missing values by 0.

X̃k: = XNA
k: � Dk: = Xk: � Dk: imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1)

• Fk−1 = σ(X1:, y1,D1: . . . ,Xk−1:, yk−1,Dk−1:)

• ∇R(βk−1) = E(Xk:,yk )[Xk:(X
T
k:βk−1 − yk)]

• No access to Xk:, only to X̃k:.

• Another source of randomness: E = E(Xk:,yk ),Dk:

indep
= E(Xk:,yk )EDk:

• EDk:
|Fk−1  EDk:

X Mask at step k independent from the previous constructed iter-
ate.
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k: � Dk: = Xk: � Dk: imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1)

EDk:

[
X̃k:

]
= EDk:


δk1Xk1

...
δkdXkd


 =

p1Xk1
...

pdXkd


Thus

EDk:

[
P−1X̃k:

]
:=

p−1
1

. . .
p−1
d


p1Xk1

...
pdXkd

 = Xk:
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Dealing with missing values
Our strategy inspired by Ma et Needell

Online-streaming: for a new observation (XNA
k: , yk)

• Imputing the missing values by 0.

X̃k: = XNA
k: � Dk: = Xk: � Dk: imputed covariates

• Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1)

One obtains

g̃k(βk−1) = P−1X̃k:

(
X̃T
k:P
−1βk−1 − yk

)
−(I−P)P−2diag

(
X̃k:X̃

T
k:

)
βk−1.

11/38



Averaged SGD for missing values
Debiasing the gradient

Algorithm 1 Averaged SGD for Heterogeneous Missing Data

Input: data X̃ , y , α (step size)
Initialize β0 = 0d .
Set P = diag

(
(pj)j∈{1,...,d}

)
∈ Rd×d .

for k = 1 to n do
g̃k (βk−1) = P−1X̃k:

(
X̃T
k:P
−1βk−1 − yk

)
− (I− P)P−2diag

(
X̃k:X̃

T
k:

)
βk−1

βk = βk−1 − αg̃k(βk−1)

β̄k = 1
k+1

∑k
i=0 βi = k

k+1 β̄k−1 + 1
k+1βk

end for

• p = 1⇒ P−1 = Id standard least squares stochastic algorithm.
• Computation cost for the gradient still weak.
• Trivially extended to ridge regularization (no change for the

gradient): minβ∈Rd R(β) + λ‖β‖2, λ > 0
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SGD with NA: Take home message

X We aim to estimate β? with missing data.

X We consider an heterogeneous MCAR framework.

X We provide an unbiased gradient oracle of the true risk.

X Only for Least Squares Regression.

X Requires independent points at each iteration: only for the
first pass.

X Requires the knowledge of P .

Convergence?
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Optimization without missing values

• F is convex and L-smooth5 i.e. if F is twice differentiable,

∀β ∈ Rd , 0 ≤ |eigenvalues(∇2F (β))| ≤ L.

7 Convergence rate: O(k−1/2)

• F is µ-strongly convex and L-smooth.
7 Convergence rate: O(µk−1)

• F is convex and quadratic6.
X Convergence rate: O(k−1)

5Arkadi Nemirovski et al. “Robust stochastic approximation approach to stochastic
programming”. In: SIAM Journal on optimization 19.4 (2009), pp. 1574–1609.

6Eric Moulines and Francis R Bach. “Non-asymptotic analysis of stochastic
approximation algorithms for machine learning”. In: Advances in Neural Information
Processing Systems. 2011, pp. 451–459.
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Theoretical results
Technical lemmas

• Goal: establish a convergence rate.
• Assumptions on the data: (Xk:, yk) ∈ Rd ×R i.i.d., E[‖Xk:‖2] and

E[y2
k ] finite, H := E(Xk:,yk )[Xk:X

T
k: ] invertible.

Lemma: noise induced by the imputation by 0 is structured
(g̃k (β?))k with β? is Fk−measurable and ∀k ≥ 0,

• E[g̃k (β?) | Fk−1] = 0 a.s.

• E[‖g̃k (β?)‖2 | Fk−1] is a.s. finite.

• E[g̃k (β?)g̃k (β?)T ] 4 C(β?) = c(β?)H.

Lemma: (g̃k(β?))k are a.s. co-coercive
For any k,

• g̃k is Lk,D -Lipschitz

• there exists a random primitive function f̃k which is a.s. convex
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Theoretical results
Convergence results

Theorem: convergence rate of O(k−1), streaming setting
Assume that for any i , ‖Xi :‖ ≤ γ almost surely for some γ > 0. For any
constant step-size α ≤ 1

2L , our algorithm ensures that, for any k ≥ 0:

E
[
R
(
β̄k
)
− R(β?)

]
≤ 2

k

 √
c(β?)d︸ ︷︷ ︸

variance term

+
‖β0 − β?‖√

α︸ ︷︷ ︸
bias term


2

,

• L := supk,D Lipschitz constants of g̃k

• pm = minj=1,...d pj minimal probability to be observed among the variables.

• c(β?) =

classical term︷ ︸︸ ︷
Var(εk )

p2
m

+

multiplicative noise (induced by naive imputation)︷ ︸︸ ︷(
7(1− pm)

p3
m

)
γ2‖β?‖2︸ ︷︷ ︸

increasing with the missing values rate

.
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Theoretical results
Comments

• Optimal rate for least-squares regression.

• In the complete case: same bound as Bach and Moulines.

• Bound on the iterates for the ridge regression (β → R(β) + λ‖β‖2
is 2λ-strongly convex).

E
[∥∥∥βk − β?

∥∥∥2
]
≤

1
λk

(√
c(β?)d +

‖β0 − β?‖
√
α

)2
.
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Theoretical results
What impact of missing values?

Fewer complete observations is better than more incomplete
ones: is it better to access 200 incomplete observations (with a
probability 50% of observing) or to have 100 complete
observations?
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Theoretical results
What impact of missing values?

Fewer complete observations is better than more incomplete
ones: is it better to access 200 incomplete observations (with a
probability 50% of observing) or to have 100 complete
observations?

• without missing observations: variance bound scales as O
(

Var(εk )d
k

)
.

• with missing observations: O
(

Var(εk )d
kp2

m
+ C(X ,β?)

kp3
m

)
.

• variance bound larger by a factor p−1
m for the estimator derived from

k incomplete observations than for k × pm complete observations.

The variance bound for 200 incomplete observations (with a probability
50% of observing) is twice as large as for 100 complete observations.
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Theoretical results
What impact of missing values ?

We do better than discarding all observations which contain
missing values:

X =



X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7

 X =



X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7


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Theoretical results
What impact of missing values ?

We do better than discarding all observations which contain
missing values:
Example in the homogeneous case with p the proportion of being observed.

• keeping only the complete observations, any algorithm:

• number of complete observations kco ∼ B(k, pd).
• statistical lower bound: Var(εk )d

kco
.

• in expectation, lower bound on the risk larger than Var(εk )d
kpd .

• keeping all the observations, averaged SGD: upper bound
O
(

Var(εk )d
kp2 + C(X ,β?)

kp3

)
.

Our strategy has an upper-bound pd−3 smaller than the lower bound
of any algorithm relying only on the complete observations.
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Theoretical results
Result with estimated missing probabilities

Finite-sample setting: n is fixed
Algorithm and main result: requirement of (pj)j=1,...,d .
→ estimator β̄k
In practice: estimated missing probabilities (p̂j)j=1,...,d

→ estimator ¯̂
βk . (finite-sample setting: first half of the data to

evaluate (p̂j), second half to build ¯̂βk).

Result with estimated missing probabilities (simplified version)
Under additional assumptions of bounded iterates and strong
convexity of the risk, Algorithm 1 ensures that, for any k ≥ 0:

E
[
R( ¯̂βk)− R(β̄k)

]
= O(1/kp6m),

with pm = minj∈{1,...,d} pj .

21/38



Convergence rates: Take home message

New results:
X Fast convergence rate because the noise is structured. Optimal

w.r.t. k .
X Dependence with p: much better than deleting incomplete

data, but not as good as pk complete observations

X Convergence with strong-convexity and estimated probabilities
(preserved 1/k , degraded dependence in p)

Open questions:

X What about empirical risk? [to be continued.]
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Experiments
Synthetic data: setting

• Xi :
i.i.d.∼ N (0,Σ), where Σ with uniform random eigenvectors and

decreasing eigenvalues, εi ∼ N (0, 1)

• yi = Xi :β + εi , for β fixed

• d = 10, 30% missing values.

• AvSGD averaged iterates with a constant step size α = 1
2L

a.
• SGDb with iterates βk+1 = βk − αk g̃ik (βk), and decreasing

step size αk = 1√
k+1

.

• SGD_cstb with a constant step size α = 1
2L

a

aL is considered to be known.
bMa and Needell, “Stochastic Gradient Descent for Linear Systems with Missing

Data”.
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Experiments
Synthetic data: convergence rate

Figure: Empirical excess risk (Rn(βk)− Rn(β?)).

• Multiple passes (left): saturation.

• One pass (right): saturation for SGD_cst, O(n−1/2) for SGD,
O(n−1) for AvSGD.
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Experiments
Real dataset: Superconductivity, prediction task

• Goal: predict the critical temperature of each superconductor. Com-
plete dataset: 81 quantitatives features, 21263 superconductors.

• Introduction of 30% of heterogeneous MCAR missing values, proba-
bilities of being observed vary between 0.7 and 1.

• Dataset divided into training and test set, with no missing values in
the test set.

• Prediction of the critical temperature: ŷn+1 = XT
n+1β̂ with the coef-

ficient

• β̂ = βAvSGD
n by applying AvSGD on the training set.

• β̂ = βEM
n by applying the EM algorithm on the training set.

• β̂ = β̄AvSGD
n by imputing the missing data naively by the mean

in the training set, and applying the averaged SGD without
missing data (Mean+AvSGD)
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Experiments
Real dataset: Superconductivity, prediction task

Figure: Prediction error ‖ŷ − y‖2/‖y‖2 boxplots.

• EM out of range (due to large number of covariates).

• AvSGD performs well, very close to the one obtained from the com-
plete dataset (AvSGD complete) with or without regularization.
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Take home message

New results:
X SGD for dealing with heterogeneous MCAR data with a least

squares loss.
Open questions:

X Dealing with more general loss function. [to be continued.]

X More complex missing-data patterns such as MAR and
MNAR. [to be continued.]
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Open question 1: Finite-sample setting

Context:
• Finite-sample setting: n is fixed
• Minimizing the empirical risk:

βn? = arg min
β∈Rd

{
Rn(β) :=

1
n

n∑
i=1

fi (β)

}

Point to discuss:
• True risk in the finite sample setting?
• Unbiased gradients for the empirical risk?
• Interest of the empirical risk in presence of missing data?
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Open question 1: Finite-sample setting

Remark 1: convergence rate for the true risk when n is fixed

X Same convergence rate holds.

X But only for one epoch (= use only once each data).
Otherwise: Dk:��⊥⊥βk−1 → bias in the gradient.
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Open question 1: Finite-sample setting

Remark 2: no unbiased gradients for the empirical risk?
How to choose the k-th obstervation ?

7 k uniformly at random ⇒ we use a data several times.
7 k not chosen uniformly at random ⇒ sampling not uniform

and bias in the gradient.
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Open question 1: Finite-sample setting

Remark 2: no unbiased gradients for the empirical risk?
How to choose the k-th obstervation ?

7 k uniformly at random ⇒ we use a data several times.
7 k not chosen uniformly at random ⇒ sampling not uniform

and bias in the gradient.

Idea? Interesting paper on without-replacement samplinga

• Draw a new permutation on {1, . . . , n} uniformly at random
and process the individual in that order.

• Results on the convergence rate preserved for SGD.
• To be adapted for the averaged SGD with NA.

aShamir, “Without-replacement sampling for stochastic gradient methods”.
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Open question 1: Finite-sample setting

Remark 3: is the empirical risk natural with missing values?
• Without NA: interest of the empirical risk is known exactly ⇒

we can minimize it with precision.
• Without NA: empirical risk not observed.
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Open question 2: other loss function

X Gradient debiased for least-squares loss.
Open question: What for the logistic loss?

fi (β) =
1
n

∑
i

log(1 + exp(−yiXT
i β)), yi ∈ {1,−1}

Gradient: ∇fi (β) = −yiXi

1+exp(yiX
T
i β)

• Debiasing the gradient?
• Deriving the theoretical results?
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Open question 2: other loss function

• Gradient: ∇fk(β) = −ykXk

1+exp(ykX
T
k β)

.

• Iteration k: βk = βk−1 − αg̃k(β).

PB for debiasing: compute E
[

u
1+exp(u)

]
, when u is Gaussian.

Ideas:
X Partially debiasing (only the numerator),
X Approximating the gradient and debiasing this approximation.

→ Only debiasing the numerator: g̃k(β) = −ykXk

p(1+exp(ykX
T
k β))

→ Debiasing the approximation of the gradient:

−ykXk

1 + exp(ykX
T
k β)

≈ −ykXk

2
+

XT
k βXk

4
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Open question 2: other loss function

• Hessian: Hk(β) =
exp(ykX

T
k β)

1+exp(ykX
T
k β)

XT
k Xk .

• Iteration k of Bach and Moulines:
βk = βk−1 − α(∇fk(β̄k−1) + Hk(β̄k−1)(βk−1 − β̄k−1)

→ Use the partially debiasing of the gradient and debiasing the
quadratic part XT

k Xk of the Hessian.

→ Debiasing the approximation of the gradient and debiasing the
upper-bound of the Hessian Hk(β) ≤ 1

4X
T
k Xk
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Open question 3: other missing-data
mechanisms

X Heterogeneous MCAR data:

D = (δij)1≤i≤n,1≤j≤d with δij ∼ B(pj).

Open question: What for the MAR or MNAR data? We can
not debiase the gradient using

EDk ,Xk ,yk 6= EDk
EXk ,yk

• MCAR: Dk ⊥⊥ Xk , yk

• MAR: Dk ⊥⊥ Xmis
k |X obs

k , yk

• MNAR: other cases.
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Open question 3: other missing-data
mechanisms

Figure: 1 pass, assuming MAR data
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Thanks !
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Missing values setting
Mechanism assumption

• Why data is missing?
• Missing-data mechanism7: L(D|X )

• Example: Income & Age, with missing values on Income.

• MCAR: the missing-data pattern is independent of the data.

• MAR: the missing-data pattern depends on the observed values.

• MNAR: the missing-data pattern depends on the missing values
(and potentially on the observed values too).

7Roderick JA Little and Donald B Rubin. Statistical analysis with missing data.
Vol. 793. John Wiley & Sons, 2019.
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Algorithms
Step-size

Algorithm true for α ≤ 1
2L → we can overestimate L (but not

underestimate)
We take α = 1

2L , where L is chosen:
• oracle value: we proved L ≤ 1

p2
m

maxk ‖Xk:‖2 a.s.

• estimated value: L̂NA
n = 1

p̂2
m

max1≤k≤n
‖X̃k:‖2d∑

j Dkj
, with

p̂m = min1≤j≤d p̂j , and p̂j =
∑

k Dkj

n . (‖X̃k:‖2 divided by the
proportion of the NA in the row).
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Algorithm
Polynomial features

d = 2. Accounting for the effects of X 2
k1, X

2
k2, Xk1Xk2.

• augmented design matrix: (X:1|X:2|X:1X:2|X 2
:1|X 2

:2)T .

• Debiased gradient: U�−1 � X̃k:X̃
T
k:βk − diag(U)�−1 � X̃k:yk

U =


p1 p1p2 p1p2 p1 p1p2
p1p2 p2 p1p2 p1p2 p2
p1p2 p1p2 p1p2 p1p2 p1p2
p1 p1p2 p1p2 p1 p1p2
p1p2 p2 p1p2 p1p2 p2

 ,

U�−1: formed of the inverse coefficients of U.
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Algorithm
Polynomial features

d = 2. Accounting for the effects of X 2
k1, X

2
k2, Xk1Xk2.

100 101 102 103 104 105

k

10 4

10 3

10 2

R n
(

k)
R n

(
)

AvSGD

Figure: Empirical excess risk (Rn(βk)− Rn(β?)) given n for synthetic
data (n = 105, d = 10) when the model accounts mixed effects.
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Algorithm
Polynomial features

For real data (Superconductivity dataset) 3 algorithms to compare :

• the averaged SGD on complete data (blue)

• the proposed debiased averaged SGD (orange)

• the averaged SGD run on imputed-by-0 data without any debiasing
(green)

100 101 102

k (one epoch)

2 × 10 1

3 × 10 1

4 × 10 1

R n
(

k)
R n

(
* )

AvSGD (complete data)
AvSGD (NA)
AvSGD (NA, imput0)

Figure: Empirical excess risk (Rn(βk)− Rn(β?)) given n for the
superconductivity dataset (n = 21263) (containing 81 initial features)
and d = 3403 with polynomial features of degree 2.
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Experiments
Synthetic data: homogeneous vs heterogeneous

1001 1010 1100 2000 11000 n

k

10 4

10 3

10 2

10 1
R n

(
k)

R n
(

)

AvSGD_heterogeneous
AvSGD_homogeneous

Figure: Empirical excess risk Rn(βk)− Rn(β?), n = 105.

• Missing values introduced with different missingness probabilities.

• Taking into account the heterogeneity in the algorithm (plain line):
good rate of convergence for AvSGD.

• Ignoring the heterogeneity (dashed line): stagnation far from the
optimum in termes of empirical risk.
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Experiments
Real dataset: Traumabase, model estimation

• Goal: model the level of platelet upon arrival at the hospital from
the clinical data of 15785 patients.

• Explanatory variables selected by doctors: seven quantitative
(missing) variables.

• Model estimation: do the effect of the variables on the platelet
make sense ?

• Similar results than EM algorithm but effects of HR and ∆.Hemo
are not in agreement with the doctors opinion.

Variable Effect NA %
Lactate − 16%
∆.Hemo + 16%
VE − 9%
RBC − 8%
SI − 2%
HR + 1%
Age − 0%
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Experiments
Real dataset, Superconductivity, prediction task

Comparison to two-step heuristics (no theoretical guarantees):
• the covariates imputed

• mean (naive)
• IterativeImputer (estimates each feature from all the others)

• linear regression (LR) performed on the competed dataset

LR (no NA) Mean+LR ICE+LR AvSGD

0.4

0.2

0.0

0.2

0.4

0.6

R
2  C

oe
ffi

cie
nt

Figure: R2 coefficients, 60% MCAR values.
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Missing data setting
Missing-data patterns dependent

In our setting: independent missing-data patterns

D.j ⊥⊥ D.j ′ , j 6= j ′

Dependent missing-data patterns

g̃k(β) := (W � (X̃k:X̃
T
k: ))β − ykP

−1X̃k:

with W ∈ Rd×d , and Wij := 1/E[δkiδkj ] for 1 ≤ i , j ≤ d
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Key assumption for fast rate?

• ∇R(βk−1) = E(Xk:,yk )[Xk:(X
T
k:βk−1 − yk)] = H(βk−1 − β?).

• We do: βk = βk−1 − αg̃k(βk−1).

• What is the noise induced by using the unbiased stochastic
gradient g̃k?

∇R(βk−1)−g̃k(βk−1) = (H − Xk:X
T
k: )(βk−1 − β?)︸ ︷︷ ︸

multiplicative noise

− Xk:εk︸ ︷︷ ︸
additive noise

=: ζk

• Assumption on the additive noise?

βk = βk−1 − αH(βk − β?) + αζk

H(βk − β?) = βk−1 − βk + αζk

(β̄k − β?) = H−1 (β0 − β?)

αn
+ H−1

n∑
k=1

ζk
n
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Open question 2: other loss function

102 103 104 105

k  (nb of passes = 1)

0.65

0.66

0.67

0.68

0.69

R n
(

k)

mySGD
SGD_approx
SGD_imp0 (NA)

SGD_approx_debias (NA)
SGD_partdebias (NA)
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Open question 2: other loss function

100 101 102 103

k  (nb of passes = 1)
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SGD_BM
SGD_BM_approx
SGD_BM_imp0 (NA)

SGD_BM_approx_debias (NA)
SGD_BM_partdebias (NA)
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