
Estimation and imputation in Probabilistic Principal Component Analysis with
Missing Not At Random data

Aude Sportisse 1 Claire Boyer 1 Julie Josse 2

1Sorbonne Université 2INRIA

Proposal:
Handling several MNAR variables (coupled
with M(C)AR variables) in PPCA model with-
out modeling the missing-data mechanism and
using only the observed information: identifi-
ability and estimation of the model parameters and
imputation of the missing values.

Missing data

•One of the ironies of working with Big Data is that missing
data plays an ever more significant role.

•Three types of missing-data mechanisms [1]:
•MCAR missing values does not depend on the data.
•MAR missing values depends on the observed variables.
•MNAR missing values depends on both observed and unobserved
data such as its value itself.

•Most methods focus on the easiest M(C)AR data, here
focus on MNAR data.

Existing works for MNAR data

•Modeling the MNAR mechanism [2, 3].
7Parametric assumption for the mechanism distribution.
7Computationally costly.

•Without modeling the mechanism and by only using all
available observed cells [4, 5, 6].
7Restricted to simple linear models with few missing var.

•Most of the works consider self-masked MNAR vari-
ables: the missingness of a variable depends on the vari-
able itself. E.g. the probability to have a missing value on
income depends on the value of income (rich people less
inclined to reveal their income).
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Setting

•Data matrix Y ∈ Rn×p,
•Coefficients matrix B ∈ Rr×p of rank
r < min{n, p}

• r latent variables grouped in W ∈
Rn×r,

• Ω ∈ Rn×p the missing-data pattern:
Ωij = 1 if Yij is observed, 0 otherwise.
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Y.1 Y.2 Y.3 . . . Y.p
12 28 31 . . . NA
NA 23 89 . . . 85
32 6 24 . . . NA
... ... ... . . . ...

NA 3 7 . . . 11



PPCA model

Y = 1α+WB+ε,with



W = (W1.| . . . |Wn.)T ,Wi. ∼ N (0r, Idr×r),
α ∈ Rp and 1 = (1 . . . 1)T ∈ Rn,
ε = (ε1.| . . . |εn.)T , εi. ∼ N (0p, σ2Idp×p).

PPCA model identifiability with MNAR data

• Identifying the PPCA model
⇔ identifying the missing-data mechanism.

Assumptions:

A01.d self-masked MNAR var. and p− d other MCAR (or observed)
var., Fm known strictly monotone with a finite support
P(Ωim = 1|Yi.) = Fm(φ0

m + φ1
mYim), with φm = (φ1

m, φ
2
m) the

missing-data mechanism.
A02.∀(k, `) ∈ {1, . . . , p}2, k 6= `, Ω.k ⊥⊥ Ω.`|Y

Proposition 1: idenfiability
•Under A01. and A02., the PPCA parameters (α,Σ) and the
missing-data mechanism parameter φ are identifiable.

•Assuming that the noise level σ2 is known, the coefficient ma-
trix B is identifiable up to a row permutation.

General MNAR setting for
estimation/imputation

• r pivot variables indexed by J observed or MCAR.
•d general MNAR variables indexed by M, missingness depends
on all the variables except r ones. With J̄ = {1, . . . , p} \ J ,

∀m ∈M, P(Ωim = 1|Yi.) = P(Ωim = 1|(Yik)k∈J̄ ).

Estimation with MNAR data

Toy exemple: p = 3, r = 2, Y.1 MNAR, Y.2, Y.3 observed.

•
Y.1 Y.2 Y.3

 = 1
α1 α2 α3

+
W.1 W.2

B+ε.
•Assumption: fully connected PPCA
i.e. any variable generated by all the latent
variables⇒ linear links can be established.

Y.2 Y.1 Y.3

W.1 W.2

Ω.1

Y.2 Y.1 Y.3

Ω.1

Assumptions:

A1.
B.1 B.2

 is invertible X fully connected PPCA

A2.Y.2 ⊥⊥ Ω.1|Y.3 X MNAR mechanism
A3.Consistent estimators for α2 and α3 X observed variables
A4.Consistent estimators for (Bc2→1,3[k])k∈{0,1,3} X noise tends to zero

Proposition 4: mean estimation
•Under A1. and A2., one defines the estimator for the mean of Y:1

α̂1 := α̂2−B̂c2→1,3[0]−B̂c2→1,3[3]α̂3

B̂c2→1,3[1]
, (Bc2→1,3[k])k∈{0,1,3}: effects of Y.2 on Y.1, Y.3 when Ω.1 = 1.

•Under A3. and A4., α̂1 is a consistent estimator of α1.

•Same method for the variance and covariances, Σ̂ estimates Σ.
• Σ̂− σ2Id3×3 estimates BTB ⇒ estimation of B (r, σ2 known).

Imputation of the missing values

• Impute the missing values Yi1 for i ∈ {1, . . . , n} such that Mi1 = 0 using the condi-
tional expectation of (Yi1) given Yi2 and Yi3.

Practical implementation

•Pivot variable selection: with experts or var. with less %NA,
bigger set (> r) and estimates aggregation.

• (Bc2→1,3[k])k∈{0,1,3} estimated by the coefficients of the linear
regression of Y.2 on Y.1 and Y.3 using the rows where Y.1 is
observed.

• α̂2 and α̂3 are computed
as empirical means of Y:2
and Y:3.

•CV strategy to estimate
σ2 and r.

Application to clinical data TraumaBase®

•EMMAR: EM algorithm to perform PPCA with
MAR values [7].

•SoftMAR: matrix completion using iterative
SVD algorithm for M(C)AR values [8].

•MNARparam: low-rank method for MNAR
values (modeling the mechanism) [3].

•Mean: naive imputation by the mean.
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Figure 1: Our methodMNAR compared with oth-
ers methods in terms of imputation error.


