Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data

Proposal:

Handling several MNAR variables (coupled with M(C)AR variables) in PPCA model without modeling the missing-data mechanism and using only the observed information: identifi**ability** and **estimation** of the model parameters and **imputation** of the missing values.

Missing data

- One of the ironies of working with Big Data is that missin data plays an ever more significant role.
- Three types of **missing-data mechanisms** [1]:
- MCAR missing values does not depend on the data.
- MAR missing values depends on the observed variables.
- MNAR missing values depends on both observed and unobserv data such as its value itself.
- Most methods focus on the easiest M(C)AR data, here focus on MNAR data.

Existing works for MNAR data

- Modeling the MNAR mechanism [2, 3]. × Parametric assumption for the mechanism distribution × Computationally costly.
- Without modeling the mechanism and by only using a available observed cells [4, 5, 6].
- × Restricted to simple linear models with few missing var
- Most of the works consider **self-masked MNAR** var ables: the missingness of a variable depends on the var able itself. E.g. the probability to have a missing value o income depends on the value of income (rich people les inclined to reveal their income).

References

- [] R. JA Little and D. B Rubin. Statistical analysis with missing data.
- [2] J. G Ibrahim, S. R Lipsitz, and M-H Chen. Missing covariates in generalized linear models when the missing data mechanism is non-ignorable.
- 3] A. Sportisse, C. Boyer, and J. Josse. Imputation and low-rank estimation with missing non at random data.
- 4] W. Miao and E Tchetgen Tchetgen. Identification and inference with nonignorable missing covariate data.
- [5] G. Tang, R. JA Little, and T. E Raghunathan. Analysis of multivariate missing data with nonignorable nonresponse.
- [6] K. Mohan, F. Thoemmes, and J. Pearl. Estimation with incomplete data: The linear case.
- [7] A. Ilin and T. Raiko. Practical approaches to principal component analysis in the presence of missing values.
- [8] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices.

Aude Sportisse ¹ Claire Boyer ¹ Julie Josse ²

¹Sorbonne Université ²INRIA

Setting	5)
---------	----

Setting	
 Data matrix Y ∈ ℝ^{n×p}, Coefficients matrix B ∈ ℝ^{r×p} of rank r < min{n, p} r latent variables grouped in W ∈ ℝ^{n×r}, Ω ∈ ℝ^{n×p} the missing-data pattern: Ω_{ij} = 1 if Y_{ij} is observed, 0 otherwise. 	$ \begin{array}{c} & \dashrightarrow & A \\ Y \odot \Omega \\ & Y \odot \Omega \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
PPCA model	
$Y = 1\alpha + WB + \epsilon, \text{ with } \begin{cases} W = (W_{1.} \dots W_n] \\ \alpha \in \mathbb{R}^p \text{ and } 1 = (1) \\ \epsilon = (\epsilon_{1.} \dots \epsilon_{n.})^T, \end{cases}$	$(.)^T, W_i$ \sim $(1)^T \in$ $\epsilon_{i.} \sim \mathcal{N}(0)$
PPCA model identifiability w	ith M
 Identifying the PPCA model ⇔ identifying the missing-data mechanism. Assumptions: 	
A01. d self-masked MNAR var. and $p - d$ of var., F_m known strictly monotone with $\mathbb{P}(\Omega_{im} = 1 Y_{i.}) = F_m(\phi_m^0 + \phi_m^1 Y_{im}), T_m$ missing-data mechanism.	ther MCA a finite s with ϕ_m
A02. $\forall (k, \ell) \in \{1, \dots, p\}^2, k \neq \ell, \qquad \Omega_{.k}$	$\square \Omega_{\ell} Y$
Proposition 1: ident	lability
 Under A01. and A02., the PPCA parmissing-data mechanism parameter φ a Assuming that the noise level σ² is known trix B is identifiable up to a row permutation. 	ameters re identi wn, the o tation.
General MNAR sett estimation/imputa	ting for ation

• r pivot variables indexed by \mathcal{J} observed or MCAR. • d general MNAR variables indexed by \mathcal{M} , missingness depends on all the variables except r ones. With $\mathcal{J} = \{1, \ldots, p\} \setminus \mathcal{J}$, $\forall m \in \mathcal{M}, \quad \mathbb{P}(\Omega_{im} = 1 | Y_{i.}) = \mathbb{P}(\Omega_{im} = 1 | (Y_{ik})_{k \in \overline{\mathcal{I}}}).$

Estimation with MNAR data

iNAR data

AR (or observed) support $= (\phi_m^1, \phi_m^2)$ the

(α, Σ) and the fiable. coefficient ma-

- Toy exemple: p = 3, r = 2, $Y_{.1}$ MNAR, $Y_{.2}$, $Y_{.3}$ observed.
- $(Y_{.1} Y_{.2} Y_{.3}) = \mathbf{1} (\alpha_1 \alpha_2 \alpha_3) + (W_{.1} W_{.2}) B + \epsilon.$
- Assumption: fully connected PPCA i.e. any variable generated by all the latent variables \Rightarrow linear links can be established.

Assumptions:

- A1. $(B_{.1} B_{.2})$ is invertible
- A2. $Y_{.2} \perp \Omega_{.1} | Y_{.3}$
- **A3.** Consistent estimators for α_2 and α_3
- A4. Consistent estimators for $(\mathcal{B}_{2\to 1,3[k]}^c)_{k\in\{0,1,3\}}$

Proposition 4: mean estimation

- Under A1. and A2., one defines the estimator for the mean of $Y_{:1}$ • Under A3. and A4., $\hat{\alpha}_1$ is a consistent estimator of α_1 .
- Same method for the variance and covariances, $\hat{\Sigma}$ estimates Σ .
- $\hat{\Sigma} \sigma^2 \mathrm{Id}_{3\times 3}$ estimates $B^T B \Rightarrow$ estimation of B $(r, \sigma^2 \text{ known})$.

Imputation of the missing values

tional expectation of (Y_{i1}) given Y_{i2} and Y_{i3} .

- Pivot variable selection: with experts or var. with less %NA, bigger set (> r) and estimates aggregation.
- and $Y_{:3}$. • $(\mathcal{B}_{2\to 1,3[k]}^c)_{k\in\{0,1,3\}}$ estimated by the coefficients of the linear regression of $Y_{.2}$ on $Y_{.1}$ and $Y_{.3}$ using the rows where $Y_{.1}$ is • CV strategy to estimate σ^2 and r. observed.

Application to clinical data TraumaBase[®]

- **EMMAR**: EM algorithm to perform PPCA with MAR values [7].
- SoftMAR: matrix completion using iterative SVD algorithm for M(C)AR values [8].
- **MNARparam**: low-rank method for MNAR values (modeling the mechanism) [3].
- Mean: naive imputation by the mean.

 \checkmark fully connected PPCA \checkmark MNAR mechanism \checkmark observed variables \checkmark noise tends to zero

 $\hat{\alpha}_{1} := \frac{\hat{\alpha}_{2} - \hat{\mathcal{B}}_{2 \to 1,3[0]}^{c} - \hat{\mathcal{B}}_{2 \to 1,3[3]}^{c} \hat{\alpha}_{3}}{\hat{\mathcal{B}}_{2 \to 1,3[1]}^{c}}, \ (\mathcal{B}_{2 \to 1,3[k]}^{c})_{k \in \{0,1,3\}}: \ effects \ of \ Y_{.2} \ on \ Y_{.1}, Y_{.3} \ when \ \Omega_{.1} = 1.$

• Impute the missing values Y_{i1} for $i \in \{1, \ldots, n\}$ such that $M_{i1} = 0$ using the condi-

Practical implementation

• $\hat{\alpha}_2$ and $\hat{\alpha}_3$ are computed as empirical means of $Y_{:2}$

Figure 1: Our method **MNAR** compared with others methods in terms of imputation error.