Estimation and imputation in Probabilistic Principal Component Analysis with Missing Not At Random data
 SORBONNE

UNIVERSITÉ

Aude Sportisse ${ }^{1}$ Claire Boyer ${ }^{1}$ Julie Josse ${ }^{2}$
${ }^{1}$ Sorbonne Université ${ }^{2}$ INRIA

Proposal:

Handling several MNAR variables (coupled with M(C)AR variables) in PPCA model without modeling the missing-data mechanism and using only the observed information: identifiability and estimation of the model parameters and imputation of the missing values.

Missing data

One of the ironies of working with Big Data is that missing data plays an ever more significant role.
Three types of missing-data mechanisms [1]:

- MCAR missing values does not depend on the data.

MAR missing values depends on the observed variables.
MNAR missing values depends on both observed and unobserved data such as its value itself.
Most methods focus on the easiest $\mathrm{M}(\mathrm{C}) \mathrm{AR}$ data, here focus on MNAR data

Existing works for MNAR data

- Modeling the MNAR mechanism $[2,3]$.
\times Parametric assumption for the mechanism distribution. x Computationally costly.
- Without modeling the mechanism and by only using all available observed cells $[4,5,6]$.
\times Restricted to simple linear models with few missing var. - Most of the works consider self-masked MNAR variables: the missingness of a variable depends on the variable itself. E.g. the probability to have a missing value on income depends on the value of income (rich people less inclined to reveal their income).

Setting

- Data matrix $Y \in \mathbb{R}^{n \times p}$,
- Coefficients matrix $B \in \mathbb{R}^{r \times p}$ of rank $r<\min \{n, p\}$
- r latent variables grouped in $W \in$ $\mathbb{R}^{n \times r}$,
- $\Omega \in \mathbb{R}^{n \times p}$ the missing-data pattern:
$\Omega_{i j}=1$ if $Y_{i j}$ is observed, 0 otherwise.
\rightarrow Access only to
$Y \odot \Omega+N A \odot(1-\Omega)$

PPCA model

$\mid W=\left(W_{1 .}|\ldots| W_{n .}\right)^{T}, W_{i} \sim \mathcal{N}\left(0_{r}, \mathrm{Id}_{r \times r}\right)$,
$Y=\mathbf{1} \alpha+W B+\epsilon$, with $\alpha \in \mathbb{R}^{p}$ and $\mathbf{1}=(1 \ldots 1)^{T} \in \mathbb{R}^{n}$,
$\epsilon=\left(\epsilon_{1 .}|\ldots| \epsilon_{n}\right)^{T}, \epsilon_{i .} \sim \mathcal{N}\left(0_{p}, \sigma^{2} \operatorname{Id}_{p \times p}\right)$.
PPCA model identifiability with MNAR data
Identifying the PPCA model
\Leftrightarrow identifying the missing-data mechanism.
Assumptions:
A01. d self-masked MNAR var. and $p-d$ other MCAR (or observed) var., F_{m} known strictly monotone with a finite support
$\mathbb{P}\left(\Omega_{i m}=1 \mid Y_{i .}\right)=F_{m}\left(\phi_{m}^{0}+\phi_{m}^{1} Y_{i m}\right)$, with $\phi_{m}=\left(\phi_{m}^{1}, \phi_{m}^{2}\right)$ the missing-data mechanism.
A02. $\forall(k, \ell) \in\{1, \ldots, p\}^{2}, \quad k \neq \ell, \quad \Omega_{. k} \Perp \Omega_{. \mid} \mid Y$

Proposition 1: idenfiability

- Under A01. and A02., the PPCA parameters (α, Σ) and the missing-data mechanism parameter ϕ are identifiable.
- Assuming that the noise level σ^{2} is known, the coefficient matrix B is identifiable up to a row permutation.

General MNAR setting for estimation/imputation

- r pivot variables indexed by \mathcal{J} observed or MCAR.
- d general MNAR variables indexed by \mathcal{M}, missingness depends on all the variables except r ones. With $\overline{\mathcal{J}}=\{1, \ldots, p\} \backslash \mathcal{J}$,

Estimation with MNAR data

Toy exemple: $p=3, r=2, Y_{.1}$ MNAR, $Y_{.2}, Y_{3}$ observed.

- $\left(Y_{.1} Y_{.2} Y_{.3}\right)=\mathbf{1}\left(\alpha_{1} \alpha_{2} \alpha_{3}\right)+\left(W_{.1} W_{.2}\right) B+\epsilon$.
- Assumption: fully connected PPCA i.e. any variable generated by all the latent variables \Rightarrow linear links can be established. Assumptions:
$\xrightarrow\left[(1.1]{Y_{3}}\right.$

A1. $\left(B_{.1} B_{.2}\right)$ is invertible
\checkmark fully connected PPCA \checkmark MNAR mechanism
A2. $Y_{.2} \Perp \Omega_{.1} \mid Y_{.3}$
\checkmark observed variables
A3. Consistent estimators for α_{2} and α_{3} \checkmark noise tends to zero

Proposition 4: mean estimation

- Under A1. and A2., one defines the estimator for the mean of $Y_{: 1}$

- Under A3. and A4., $\hat{\alpha_{1}}$ is a consistent estimator of α_{1}.
- Same method for the variance and covariances, $\hat{\Sigma}$ estimates Σ.
- $\hat{\Sigma}-\sigma^{2} \operatorname{Id}_{3 \times 3}$ estimates $B^{T} B \Rightarrow$ estimation of $B\left(r, \sigma^{2}\right.$ known).

> Imputation of the missing values

- Impute the missing values $Y_{i 1}$ for $i \in\{1, \ldots, n\}$ such that $M_{i 1}=0$ using the conditional expectation of $\left(Y_{i 1}\right)$ given $Y_{i 2}$ and $Y_{i 3}$.

Practical implementation

- Pivot variable selection: with experts or var. with less $\% \mathrm{NA}, ~ \cdot \hat{\alpha}_{2}$ and $\hat{\alpha}_{3}$ are computed bigger set $(>r)$ and estimates aggregation.
- $\left(\mathcal{B}_{2 \rightarrow 1,3[k]}^{c}\right)_{k \in\{0,1,3\}}$ estimated by the coefficients of the linear and $Y_{\cdot 3}$. regression of $Y_{.2}$ on $Y_{.1}$ and $Y_{.3}$ using the rows where $Y_{.1}$ is $\cdot \mathrm{CV}$ strategy to estimate observed.
σ^{2} and r.
Application to clinical data TraumaBase ${ }^{\circledR}$

EMMAR: EM algorithm to perform PPCA with MAR values [7].
SoftMAR: matrix completion using iterative SVD algorithm for M(C)AR values [8].
MNARparam: low-rank method for MNAR values (modeling the mechanism) [3].
Mean: naive imputation by the mean.

Figure 1: Our method MNAR compared with oth-

