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Typical questions for Exam

• Write the generative model of the linear discriminant analysis (LDA). What are
the type of decisions boundaries between two classes for LDA?

t ∼ Mult(π1, . . . , πK ) with

K∑
k=1

πk = 1 and 0 ≤ πk ≤ 1

x |Ck ∼ N (x |µk ,Σ) ∀k ∈ {1, . . . ,K}, with Σ > 0

The decision boundary between two classes is linear (No formula is required here).
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Your viewpoint

Missing values
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Missing values are everywhere!

• unanswered questions in a survey,

• lost data,

• sensing machines that fail,

• aggregation of dataset, ...

Take-home message

Growing masses of data + Multiplication of sources
⇒ Not available values, NA

The more data we have, the more missing data we have!
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The Traumabase dataset

Trauma.center
Heart
rate

Death
Anticoagulant.

therapy
Glascow

score
. . .

Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 NA 5

Bicêtre NA 0 Yes 6

Bicêtre NA 0 No NA

Lille 62 0 Yes 6

Lille NA 0 No NA
...

...
...

...
...

250 clinical

variables

(heterogeneous)

1 patient; in total: 30 000 patients
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Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 NA 5

Bicêtre NA 0 Yes 6

Bicêtre NA 0 No NA

Lille 62 0 Yes 6

Lille NA 0 No NA
...

...
...

...
...

23 different

hospitals
7 / 50



The Traumabase dataset
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Figure: Percentage of missing values for 40 variables.
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The Traumabase dataset

Traumabase® dataset

• now 30 000 patients (in 2018: 10 000).

• 250 heterogeneous variables: continuous, categorical, ordinal,...

• 23 different hospitals

• missing values everywhere (1% to 90% NA in each variable).

• Imputation: provide a complete dataset to the doctors.

• Estimation: explain the level of platelet with pre-hospital characteristics.

• Prediction: predict the administration or not of the tranexomic acid.

• Clustering: identify relevant groups of patients sharing similarities.

Question: How to deal with missing values? A first naive idea?

9 / 50



What we should not do



Pitie-Salpêtrière 88 0 No 3
Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA


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What we should not do: discard individuals

Discarding individuals with missing values is not a solution

• Loss of information .

Traumabase®: only 5% of the rows are kept.

• Bias in the analysis .

Kept observations: sub-population not necessarily representative of the overall
population.
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What we should not do: discard individuals

Example:

• We consider a bivariate Gaussian variable. X ∼ N (µ,Σ), with

µ =

(
5
−1

)
and Σ =

(
1 0.5

0.5 1

)
• X2 is missing.

• We estimate µ2 with the empirical mean in the complete case.

• see Rmarkdown!
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What we should not do: discard individuals

−5.0
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Figure: The sub-population is representative of the overall population.
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What we should not do: discard individuals
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Figure: The sub-population is not representative of the overall population.
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Need for assumption

Example: survey with two variables, Income and Age, with missing values only on Income.

• Poor and rich respondents would be less incline to reveal their income.

• There are missing values for the smallest and highest values of Income.

• Even though Age and Income are related, the process that causes the missing data is not
fully explained by Age.

• Knowing the value of Age is not enough to retrieve the value of Income.

Take-home message

• Knowing why the data is missing is an important issue.

• The process that causes the missing data should be modeled in some situations.
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Main references

16 / 50



Goal of this course1

This is only an introduction to missing data.

• Dangers of naive methods in the analysis,

• Importance of the missing-data mechanism (type of missing data),

• EM algorithm for handling missing data (+ R code session),

• Classical mputation methods

1Inspired by the courses of Pierre-Alexandre Mattei (2019-2020) and Julie Josse (2020) on missing values.
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A statistical framework for incomplete data

X =

(
30 100 61
85 31 50

)
︸ ︷︷ ︸

not observed

XNA =

(
30 NA 61
NA NA 50

)
︸ ︷︷ ︸

observed

We observe also where are the missing values in XNA.

Definition: missing-data pattern (mask)

M ∈ {0, 1}n×d : indicates where are the missing values in XNA.

∀i , j , Mij =

{
1 if XNA

ij is missing,

0 otherwise.
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A statistical framework for incomplete data

X =

(
30 100 61
85 31 50

)
︸ ︷︷ ︸

not observed

XNA =

(
30 NA 61
NA NA 50

)
︸ ︷︷ ︸

observed

M =

(
0 1 0
1 1 0

)
︸ ︷︷ ︸

observed

Question: What to model?

• model p(XNA): too difficult because the entries XNA
ij ∈ R ∪ {NA} (semi-discrete set).

• model p(X ,M): entries are in a well-behaved mathematical set Rn×d ∪ {1, 0}n×d
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Model the joint distribution (X ,M)

We want to model the joint distribution of the data X and the missing-data pattern M.

The observations are assumed to be i.i.d., i.e. (X1,M1), . . . , (Xn,Mn) have the same
distribution and are independent

p(X ,M) =
n∏

i=1

p(Xi ,Mi ).
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Model the joint distribution (X ,M)

We want to model the joint distribution of the data X and the missing-data pattern M.

Selection model factorization

p(X ,M) = p(X )p(M|X )

where

• p(X ): distribution of the data,

• p(M|X ): conditional distribution of the missing-data pattern given the data, it is the
missing-data mechanism.

Parametric approach:
p(X ,M; θ, φ) = p(X ; θ)p(M|X ;φ)

where θ ∈ Ωθ and φ ∈ Ωφ.
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Missing-data mechanism (Rubin, 1976)

Missing Completely At Random (MCAR)

p(M|X ;φ) = p(M;φ)

Missing At Random (MAR)

X obs: observed component of X .

p(M|X ;φ) = p(M|X obs;φ)

Missing Not At Random (MNAR)

The MAR assumption does not hold.
The missingness can depend on the
missing data value itself.

Question: Which mechanism is realistic? How to choose the right mechanism for real data?
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Example of models

p(X ,M; θ, φ) = p(X ; θ)p(M|X ;φ)

• For p(X ): models seen in the rest of the course, e.g. mixture model, single Gaussian,
variational autoencoder, . . .

• For p(M|X ): typically Logit or Probit distribution.

p(Mij |Xij ;φ) = [(1 + e−φ1j (Xij−φ2j ))−1]Mij [1− (1 + e−φ1j (Xij−φ2j ))−1](1−Mij ).

But it is a strong assumption. We will see that in some situations, the missing-data
mechanism can be ignored (not modelled).
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Likelihood approach with incomplete data

• Goal of the parametric estimation: model the joint distribution (X ,M) parametrized by
θ, φ ∈ Ωθ × Ωφ.

• Likelihood-approach without missing data: maximizing the full likelihood

Lfull(θ, φ;X ,M) = p(X ; θ)p(M|X ;φ)

• Split X into two components X obs (observed features),Xmis (missing features).

• Likelihood-approach with missing data: maximizing the full observed likelihood

Lfull,obs(θ, φ;X obs,M) =

∫
Lfull(θ, φ;X ,M)dXmis
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Ignorable mechanisms

Question: How can we ignore the missing-data mechanism?
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Ignorable mechanisms

For MCAR and MAR data, we can ignore the missing-data mechanism:

Lfull,obs(θ, φ;X obs,M) ∝ Lign(θ;X obs) =

∫
p(X ; θ)dXmis = p(X obs; θ)

Take-home message

• M(C)AR: one can ignore the mechanism.

• MNAR: one should consider the mechanism.
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Link with the logistic regression

Ignorability in missing-data analysis: to model (X ,M), we can in some cases ignore the
mechanism (M|X ), by treating φ as a nuisance parameter.

→ Similar trick for logistic regression.

• p(x , y) = p(y |x ; θ)p(x) with p(x) which does not involve θ.

• Likelihood written as Lfull(θ; x , y) = p(y |x ; θ)p(x).

• Goal: estimate θ.

• We do not model p(x) because θ̂ ∈ argmaxθLfull(θ; x , y) = argmaxθp(y |x ; θ)

28 / 50



Overview

1. Introduction

2. Statistical framework in missing-data literature
Missing-data pattern
Missing-data mechanism

3. EM algorithm for handling missing values

4. Other methods to impute missing values

29 / 50



Setting

• Goal: estimate θ ∈ Ωθ, when X contain MCAR or MAR values.

• We can maximize the fully observed log-likelihood (logarithm more convenient):

θ̂ = argmaxθ `ign(θ;X obs) = log(p(X obs; θ))

• When it has no closed form, a solution can be to use the EM algorithm.
Idea: consider the missing variables as latent variables.
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Expectation Maximization algorithm (Dempster et al., 1977)

Starting from an initial point θ0, the EM algorithm proceeds two steps iteratively:

• E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(θ; θr ) = E[`full(X ; θ)|X obs, θr ]

• M-step: maximization of Q(θ; θr ) over θ.

θr+1 = argmaxθ Q(θ; θr )
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EM algorithm in a toy example

Consider a Gaussian bivariate variable X = (XT
.1 ,X

T
.2 ) ∈ Rn×2.

X ∼ N (µ,Σ),

with µ =

(
µ1

µ2

)
and Σ =

(
σ11 σ12

σ12 σ22

)
.

X.2 contain some M(C)AR missing values. Without loss of generality, assume that Xi2 is
missing, with r < i ≤ n.

Question: First, we want to know if it is possible to maximize the observed log-likelihood
directly. Write the observed log-likelihood.
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EM algorithm in a toy example

Question: Write the observed log-likelihood.

Tip: use the classical formula Xi2|Xi1 ∼ N (E[Xi2|Xi1],Var(Xi2|Xi1)) with

E[Xi2|Xi1] = µ2 +
σ21

σ11
(Xi1 − µ1)

Var(Xi2|Xi1) = σ22 −
σ2

21

σ11
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EM algorithm in a toy example

34 / 50



EM algorithm in a toy example

Question: Write the observed log-likelihood.

In this simple setting, directly maximizing the log-likelihood is possible.

`(X.1,X
obs
.2 ;µ,Σ) = −n

2
log(σ2

11)− 1

2

n∑
i=1

(Xi1 − µ1)2

σ2
11

− r

2
log

(
σ22 −

σ2
21

σ11

)2

− 1

2

r∑
i=1

(Xi2 − µ2 + σ21
σ11

(Xi1 − µ1))2(
σ22 −

σ2
21
σ11

)2

More fun: let us derive the EM algorithm!
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EM algorithm in a toy example

E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(θ; θr ) = E[`full(X ; θ)|X obs, θr ]

Question: Write the full log-likelihood (easy question).
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EM algorithm in a toy example

Question: Write Q(θ; θr ). What quantities should be computed in the E-step?
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EM algorithm in a toy example

M-step: maximization of Q(θ; θr ) over θ.

θr+1 = argmaxθ Q(θ; θr )
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Summary: EM algorithm in a toy example

• E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(θ; θr ) = E[`full(X ; θ)|X obs, θr ]

• M-step: maximization of Q(θ; θr ) over θ.

θr+1 = argmaxθ Q(θ; θr )
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Summary: EM algorithm in a toy example

• E-step: computation of
s1 =

∑n
i=1 xi1,

s11 =
∑n

i=1 x
2
i1

s2 =
∑n

i=m+1 xi2 +
∑m

i=1

(
µr2 +

σr
21
σr

11
(xi1 − µr1)

)
s22 =

∑n
i=m+1 x

2
i2 +

∑m
i=1

((
µr2 +

σr
21
σr

11
(xi1 − µr1)

)2
+ σr22 −

(σr
21)2

σr
11

)
s12 =

∑n
i=m+1 xi1xi2 +

∑m
i=1 xi1

(
µr2 +

σr
21
σr

11
(xi1 − µr1)

)
• M-step: update the parameters: µr+1

1 = s1
n , µr+1

2 = s2
n , σr+1

11 = s11
n − (µr+1

1 )2,

σr+1
22 = s22

n − (µr+1
2 )2 and σr+1

12 = s12
n − (µr+1

1 µr+1
2 ).

40 / 50



Summary: EM algorithm in a toy example

We have seen that the EM algorithm can be used to estimate the parameters of the
underlying data distribution. Question: Can we impute missing values?

Imputation of the missing values using EM algorithm

We can use the conditional expectation.
∀i ∈ {1, . . . , n} such that Mij = 1,

X imp
i1 = E[Xi2|Xi1] = µ2 +

σ21

σ11
(Xi1 − µ1)
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Naive imputation

Mean imputation, performing regression.

30 40 50
Age

20

30

40

50

60
In

co
m

e

30 40 50
Age

20

30

40

50

60
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m
e

7 bias in the estimates, correlation between the variables overestimated.
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Low rank models

Definition: low rank matrix

Θ ∈ Rn×d has a low rank, if its rank r ≥ 1, refereed to as the dimension of the vector space
generated by its columns, is small compared to the dimensions n and d , i.e. if r � min{n, d},
where � can be interpreted as ∃rmax ≥ 1, r < rmax < min{n, d}.

Low rank models: the dataset X is a noisy realisation of a low rank matrix Θ ∈ Rn×d

X = Θ + ε.

• X contain MCAR missing values.

• The goal is to estimate Θ.

• Low rank approximation is often relevant: individual profiles can be summarized into a
limited number of general profiles, or dependencies between variables can be established.
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Low rank models

Classical methods to handle missing values solve the following optimization problem:

Θ̂ ∈ argminΘ ‖(1n×d −M)� (X −Θ)‖2
F︸ ︷︷ ︸

to fit the data at best

+λ ‖Θ‖?︸ ︷︷ ︸
to satisfy the low rank constraint

,

with λ > 0 a regularization term, � the Hadamard product (by convention 0× NA = 0) and

1n×d ∈ Rn×d with each of its entry equal to 1.
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R package softImpute, Hastie et al. (2015)

Iterative algorithm: starting from an initial point Θ0,

• Estimation-step: perform the threshold SVD of the complete matrix

X t = (1n×d −M)� X + M �Θt ,

which leads to
SVDλ(X t) = UtDt

λV
t ,

where U t ∈ Rn×r , V t ∈ Rr×d are orthonormal matrices containing the singular vectors of X t and

Dt
λ ∈ Rr×r is a diagonal matrix such that its diagonal terms are

(Dt
λ)ii = max((σi − λ), 0), i ∈ {1, . . . , r}, with σi the singular values of X t .

• Imputation-step:: the entries of Θt corresponding to missing values in X are replaced by
the values of SVDλ(X t),

Θt+1 �M = SVDλ(X t)�M.
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R package missForest, Stekhoven and Buhlmann (2011)

Iterative Random Forests imputation

• Initial imputation: mean imputation and sort the variables according to the amount of
missing values
• Repeat until convergence:

• fit a random forest with X obs
j on X obs

−j (all the observed variables except variable j) and

then predict Xmis
j

• Cycling through variables
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Multiple imputation

7 Single imputation does not reflect the variability of imputation.

• Generating M plausible values for each missing values: M complete datasets, X̂ 1, . . . , X̂M .

• Analysis performed on each imputed data set

• Results are combined.

XNA

X̂ 1

X̂ 2

X̂M

A(X̂ 1)

A(X̂ 2)

A(X̂M)

Result

Impute
Analyze

Combine

mice (Buuren et al., 2010): use chained equations (iterative conditional distributions
assuming a Bayesian framework).
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Summary

Method
Simple to

Imputation
Confidence

Main drawbacks
implement intervals

Single
X single 7

biased estimates if
imputation too simple imputation

Multiple
X multiple X

combining results
imputation can be delicate

EM 7 not directly
can be specific algorithm for

obtained each statistical model
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