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Typical questions for Exam

® Write the generative model of the linear discriminant analysis (LDA). What are
the type of decisions boundaries between two classes for LDA?

K
t ~ Mult(7,...,mx) with Zﬂk =land 0< <1
k=1

X|Ck ~ N(x|pk,X) Vke{l,...,K}, withX >0

The decision boundary between two classes is linear (No formula is required here).
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Missing values
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Missing values are

® unanswered questions in a survey,
® |ost data,
® sensing machines that fail,

® aggregation of dataset, ...

Take-home message

Growing masses of data + Multiplication of sources
= Not available values, NA

The more data we have, the more missing data we have!
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The Traumabase dataset

250 clinical

- variables

Trauma.center Heart Death Anticoagulant. | Glascow / (heterogeneous)
rate therapy score
Pitie-Salpétriere 88 0 No 3
Beaujon 103 0 NA 5
Bicétre NA 0 Yes 6
Bicétre NA 0 No NA
Lille 62 0 Yes 6
Lille NA 0 No NA

1 patient; in total: 30 000 patients
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The Traumabase dataset

Trauma.center Heart Death Anticoagulant. | Glascow
rate therapy score

PitieSalpetriere | 63 | 0 No 3
Beaujon 103 0 NA 5
Bicétre NA 0 Yes 6
Bicétre NA 0 No NA

Lille 62 0 Yes 6

Lille NA 0 No NA

23 different
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The Traumabase dataset
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Figure: Percentage of missing values for 40 variables.
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The Traumabase dataset

Traumabase® dataset
® now 30 000 patients (in 2018: 10 000).

® 250 heterogeneous variables: continuous, categorical, ordinal,...
® 23 different hospitals

® missing values everywhere (1% to 90% NA in each variable).

® Imputation: provide a complete dataset to the doctors.
e Estimation: explain the level of platelet with pre-hospital characteristics.
® Prediction: predict the administration or not of the tranexomic acid.

® Clustering: identify relevant groups of patients sharing similarities.

Question: How to deal with missing values? A first naive idea?
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What we should not do

Pitie-Salpétriere 88 0 No 3
Beaujon 103 0 NA 5
Bicétre NA 0 Yes 6
Bicétre NA 0 No NA

Lille 62 0 Yes 6

Lille NA 0 No NA
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What we should not do; ————————— ]

Discarding individuals with missing values is not a solution

® Loss of information .
Traumabase®: only 5% of the rows are kept.

® Bias in the analysis .

Kept observations: sub-population not necessarily representative of the overall
population.
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What we should not do; ————————— ]

Example:

e We consider a bivariate Gaussian variable. X ~ A (p,X), with
5 1 05
H= (1) and 2. = (0.5 1 >

® \We estimate pp with the empirical mean in the complete case.

® X, is missing.

® see Rmarkdown!
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What we should not do; ————————— ]
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Figure: The sub-population is representative of the overall population.
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What we should not do; ————————— ]
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Figure: The sub-population is not representative of the overall population.
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Need for assumption

Example: survey with two variables, Income and Age, with missing values only on Income.
® Poor and rich respondents would be less incline to reveal their income.
® There are missing values for the smallest and highest values of Income.
® Fven though Age and Income are related, the process that causes the missing data is not
fully explained by Age.
® Knowing the value of Age is not enough to retrieve the value of Income.

Take-home message
® Knowing why the data is missing is an important issue.
® The process that causes the missing data should be modeled in some situations.
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Goal of this course!

This is only an introduction to missing data.
® Dangers of naive methods in the analysis,
® |Importance of the missing-data mechanism (type of missing data),
® EM algorithm for handling missing data (+ R code session),

® (Classical mputation methods

Inspired by the courses of Pierre-Alexandre Mattei (2019-2020) and Julie Josse (2020) on missing values.
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2. Statistical framework in missing-data literature
Missing-data pattern
Missing-data mechanism
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A statistical framework for incomplete data

X (30 100 61> SNA _ (30 NA 61>

85 31 50 NA NA 50
—_—
not observed observed

We observe also where are the missing values in XN4.

Definition: missing-data pattern (mask)

M € {0,1}"*9: indicates where are the missing values in XN4.

1 if X,-?IA is missing,

Vi, j, M;=
J Y {0 otherwise.
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A statistical framework for incomplete data

(30 100 61 Na (30 NA 6l /010
X_<85 31 50> X _(NA NA 5o> M_<1 1 o)
N— ———

not observed observed observed

Question: What to model?
e model p(XNA): too difficult because the entries X&VA € RU{NA} (semi-discrete set).

o © entries are in a well-behaved mathematical set R™*9 U {1,0}"*¢
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Model the joint distribution (X, M)

We want to model the joint distribution of the data X and the missing-data pattern M.

The observations are assumed to be i.i.d., i.e. (X1, My),...,(Xpn, M) have the same
distribution and are independent

p(X, M) = Hp(Xia M;).
i=1
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Model the joint distribution (X, M)

We want to model the joint distribution of the data X and the missing-data pattern M.

Selection model factorization

p(X, M) = p(X)p(M]|X)
where

® p(X): distribution of the data,

® p(M|X): conditional distribution of the missing-data pattern given the data, it is the
missing-data mechanism.

Parametric approach:

p(X, M;0,¢) = p(X;0)p(M|X; ¢)
where 0 € €y and ¢ € Q.
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Missing-data mechanism (Rubin, 1976)

Missing Completely At Random (MCAR)
p(M|X; ¢) = p(M; ¢)

Missing At Random (MAR)

X°Ps: observed component of X.

p(M|X; ¢) = p(M|X°"; ¢)

Missing Not At Random (MNAR)

The MAR assumption does not hold.
The missingness can depend on the
missing data value itself.

4

Question: Which mechanism is realistic? How to choose the right mechanism for real data?
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Example of models

p(X, M;0,¢) = p(X;0)p(M|X; ¢)

® For p(X): models seen in the rest of the course, e.g. mixture model, single Gaussian,
variational autoencoder, ...

® For p(M|X): typically Logit or Probit distribution.
(M5 6) = [(1+ e300 =) M1 — (1 4 e on—0)) 1AM,

But it is a strong assumption. We will see that in some situations, the missing-data
mechanism can be ignored (not modelled).
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Likelihood approach with incomplete data

Goal of the parametric estimation: model the joint distribution (X, M) parametrized by
0,0 € QpxQy.

Likelihood-approach without missing data: maximizing the full likelihood

qull(ea ¢; X7 M) = p(X' 0)p(M|X, ¢)

Split X into two components X°" (observed features), X™i (missing features).

Likelihood-approach with missing data: maximizing the full observed likelihood

Liuitone (6, 6 X%, M) = / L (6, 6; X, M)dX™s
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lgnorable mechanisms

Question: How can we ignore the missing-data mechanism?
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lgnorable mechanisms

For MCAR and MAR data, we can ignore the missing-data mechanism:

Liunobs(6, ¢; X%, M) o Lign(6; X°P%) = [ p(X; 0)dX™ = p(X°**; 6
) g

Take-home message

® M(C)AR: one can ignore the mechanism.

® MNAR: one should consider the mechanism.

27/50



Link with the logistic regression

Ignorability in missing-data analysis: to model (X, M), we can in some cases ignore the
mechanism (M|X), by treating ¢ as a nuisance parameter.

® p(x,y) = p(y|x;0)p(x) with p(x) which does not involve 6.

o Likelihood written as Layi(0; x,y) = p(y|x; 0)p(x).

® Goal: estimate 6.

* We do not model p(x) because § € argmaxy Ly (6; x, y) = argmaxyp(y|x; 6)
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3. EM algorithm for handling missing values
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® Goal: estimate 6 € Qy, when X contain MCAR or MAR values.

® We can maximize the fully observed log-likelihood (logarithm more convenient):
0 = argmax; lign (6; X°P%) = log(p(X°™; 9))

® When it has no closed form, a solution can be to use the EM algorithm.
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Expectation Maximization algorithm (Dempster et al., 1977)

Starting from an initial point 6°, the EM algorithm proceeds two steps iteratively:

® E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(6;0") = E[tsun(X; 6)| X", 6"]
® M-step: maximization of Q(¢;60") over 6.

6"t = argmax, Q(#;6")
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EM algorithm in a toy example

Consider a Gaussian bivariate variable X = (X[, X7) € R"™%2,

X NN(M7Z)7

with p = <“1> and ¥ = (”11 "12)
12 012 022
X contain some M(C)AR missing values. Without loss of generality, assume that Xj; is

missing, with r <7 < n.

Question: First, we want to know if it is possible to maximize the observed log-likelihood
directly. Write the observed log-likelihood.
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EM algorithm in a toy example

Question: Write the observed log-likelihood.
Tip: use the classical formula Xj2|Xi1 ~ N(E[X;2|Xi1], Var(Xi2| Xi1)) with

g
E[Xi2| Xi1] = po + ﬂ(Xil — 1)
o1
2

g
Var(X;2|X,-1) = 022 — 2L
011
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EM algorithm in a toy example
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EM algorithm in a toy example

Question: Write the observed log-likelihood.

In this simple setting, directly maximizing the log-likelihood is possible.

n

9bs n 1 (Xi1 — p1)?
(X1, X3 1, %) = 5 log(o3;) — 5 Z e
i—1 11

2 212
i=1 (022 — h)

011

022 —

Clog (o - ) 130 P Z )Y
2 o11
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EM algorithm in a toy example

E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(6; 67) = E[lrn(X; 0)| X, 0]

Question: Write the full log-likelihood (easy question).
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EM algorithm in a toy example

Question: Write Q(0;6"). What quantities should be computed in the E-step?
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EM algorithm in a toy example

M-step: maximization of Q(6;6") over 6.

g+l = argmax, Q(6;0")
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Summary: EM algorithm in a toy example

® E-step: computation of the expected full log-likelihood knowing the observed data and a
current value of the parameters.

Q(6;0") = E[lran(X; 0)[ X", 0"]
® M-step: maximization of Q(6;6") over 6.

6"t = argmax, Q(#;6")
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Summary: EM algorithm in a toy example

e E-step: computation of
n
S1= i1 Xil,
—Nn 2
S11= i1 X

52221 m+1X’2+ZI 1(“2
r \2
522:21 m+1 Q"‘Z: 1 (< 31(Xi1—/$£)> + 030 — (02111)>

(XI]. - :U’l))

S12 = Z, m+1 Xj1Xj2 + ZI 1 Xi1 ([L M1)>
® M-step: update the parameters: pj™' =&, /0t =2 oril = s (,rH1)2)
O'£2+1 — 522 _ (M£+1) and O_r+1 _ 5172 —( r+1ug+1)_
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Summary: EM algorithm in a toy example

We have seen that the EM algorithm can be used to estimate the parameters of the
underlying data distribution. Question: Can we impute missing values?

Imputation of the missing values using EM algorithm

We can use the conditional expectation.
Vie{l,...,n} such that M =1,

im g
Xii? = E[X2|Xi1] = po + U—ii(xil — 1)
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4. Other methods to impute missing values
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Naive imputation

Mean imputation, performing regression.

.

‘e &

TIPS N
. ofensad |

o s,
o P ..o
O

X bias in the estimates, correlation between the variables overestimated.




Low rank models

Definition: low rank matrix

© € R"™ 9 has a low rank, if its rank r > 1, refereed to as the dimension of the vector space
generated by its columns, is small compared to the dimensions n and d, i.e. if r < min{n, d},
where < can be interpreted as Irpax > 1,1 < fpax < min{n, d}.

Low rank models: the dataset X is a noisy realisation of a low rank matrix @ € R"*9

X=0+ce

® X contain MCAR missing values.
® The goal is to estimate ©.

® | ow rank approximation is often relevant: individual profiles can be summarized into a
limited number of general profiles, or dependencies between variables can be established.
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Low rank models

Classical methods to handle missing values solve the following optimization problem:

© € argming ||(Lnxg — M) © (X = ©)[F +A 191l

to fit the data at best to satisfy the low rank constraint

)

with A > 0 a regularization term, ® the Hadamard product (by convention 0 x NA = 0) and
1pxq € R™9 with each of its entry equal to 1.
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R package softImpute, Hastie et al. (2015)

lterative algorithm: starting from an initial point @°,

e Estimation-step: perform the threshold SVD of the complete matrix

X' =Qpxg —M)O X+ Mo O,
which leads to
SVD,(X*) = U'Di VY,

where Ut € R™" V! € R™? are orthonormal matrices containing the singular vectors of X* and
Di € R™*" is a diagonal matrix such that its diagonal terms are

(D})ii = max((oi — A),0),i € {1,...,r}, with o; the singular values of X*.

¢ Imputation-step:: the entries of ©! corresponding to missing values in X are replaced by
the values of SVD,(X?),

Ol & M = SVD, (X' & M.
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R package missForest, Stekhoven and Buhlmann (2011)

Iterative Random Forests imputation
® |nitial imputation: mean imputation and sort the variables according to the amount of
missing values
® Repeat until convergence:
* fit a random forest with XJ-O'OS on XEE-’S (all the observed variables except variable j) and
then predict X;™*
® Cycling through variables
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Multiple imputation

X Single imputation does not reflect the variability of imputation.

e Generating M plausible values for each missing values: M complete datasets, X1,..., XM.
® Analysis performed on each imputed data set

® Results are combined.

— Analyze o1 _
Impute X1t A(XH) Combine
X 5 ] — T
XM A(XM)

mice (Buuren et al., 2010): use chained equations (iterative conditional distributions
assuming a Bayesian framework).
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Simple to . Confidence .
Method . P Imputation . Main drawbacks
implement intervals
. Singl.e v single X bia§ed est_imates i.f
Imputation too simple imputation
Multipl . ini I
~Mu tlp. e v multiple v combining resu ts
imputation can be delicate
. can be specific algorithm for
EM t directl . e
X not directly obtained each statistical model
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