How to handle missing values?

Model-based approaches

Aude Sportisse

Postdoctoral researcher
Institut 3iA Côte d'Azur \& Maasai, Inria
aude.sportisse@inria.fr

October 9, 2023

Typical questions for Exam

- Write the generative model of the linear discriminant analysis (LDA). What are the type of decisions boundaries between two classes for LDA?

$$
\begin{aligned}
& t \sim \operatorname{Mult}\left(\pi_{1}, \ldots, \pi_{K}\right) \text { with } \sum_{k=1}^{K} \pi_{k}=1 \text { and } 0 \leq \pi_{k} \leq 1 \\
& x \mid \mathcal{C}_{k} \sim \mathcal{N}\left(x \mid \mu_{k}, \Sigma\right) \quad \forall k \in\{1, \ldots, K\}, \text { with } \Sigma>0
\end{aligned}
$$

The decision boundary between two classes is linear (No formula is required here).

Overview

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern
Missing-data mechanism
3. EM algorithm for handling missing values
4. Other methods to impute missing values

Your viewpoint

Missing values are everywhere!

- unanswered questions in a survey,
- lost data,
- sensing machines that fail,
- aggregation of dataset, ...

Take-home message

Growing masses of data + Multiplication of sources

$$
\Rightarrow \text { Not available values, NA }
$$

The more data we have, the more missing data we have!

The Traumabase dataset

Trauma.center	Heart rate	Death	Anticoagulant. therapy	Glascow score
Pitie-Salpêtrière	88	0	No	3
Beaujon	103	0	NA	5
Bicêtre	NA	0	Yes	6
Bicêtre	NA	0	No	variables (heterogeneous)
Lille	62	0	Yes	6
Lille	NA	0	No	NA
\vdots	\vdots	\vdots	\vdots	\vdots

The Traumabase dataset

Trauma.center	Heart rate	Death	Anticoagulant. therapy	Glascow score
Pitie-Salpêtrière	88	0	No	3
Beaujon	103	0	NA	5
Bicêtre	NA	0	Yes	6
Bicêtre	NA	0	No	NA
Lille	62	0	Yes	6
Lille	NA	0	No	NA
$\vdots \vdots$	\vdots	\vdots	\vdots	\vdots
23 different hospitals.				

The Traumabase dataset

Figure: Percentage of missing values for 40 variables.

The Traumabase dataset

Traumabase ${ }^{\circledR}$ dataset

- now 30000 patients (in 2018: 10 000).
- 250 heterogeneous variables: continuous, categorical, ordinal,...
- 23 different hospitals
- missing values everywhere (1% to 90% NA in each variable).
- Imputation: provide a complete dataset to the doctors.
- Estimation: explain the level of platelet with pre-hospital characteristics.
- Prediction: predict the administration or not of the tranexomic acid.
- Clustering: identify relevant groups of patients sharing similarities.

Question: How to deal with missing values? A first naive idea?

What we should not do

$\left(\begin{array}{ccccc}\text { Pitie-Salpêtrière } & 88 & 0 & \text { No } & 3 \\ \text { Beaujon } & 103 & 0 & \text { NA } & 5 \\ \text { Bicêtre } & \text { NA } & 0 & \text { Yes } & 6 \\ \text { Bicêtre } & \text { NA } & 0 & \text { No } & \text { NA } \\ \text { Lille } & 62 & 0 & \text { Yes } & 6 \\ \text { Lille } & \text { NA } & 0 & \text { No } & \text { NA }\end{array}\right)$

What we should not do:

Discarding individuals with missing values is not a solution

- Loss of information.

Traumabase ${ }^{\circledR}$: only 5% of the rows are kept.

- Bias in the analysis

Kept observations: sub-population not necessarily representative of the overall population.

Example:

- We consider a bivariate Gaussian variable. $X \sim \mathcal{N}(\mu, \Sigma)$, with

$$
\mu=\binom{5}{-1} \text { and } \Sigma=\left(\begin{array}{cc}
1 & 0.5 \\
0.5 & 1
\end{array}\right)
$$

- X_{2} is missing.
- We estimate μ_{2} with the empirical mean in the complete case.
- see Rmarkdown!

What we should not do:

Figure: The sub-population is representative of the overall population.

What we should not do:

Figure: The sub-population is not representative of the overall population.

Need for assumption

Example: survey with two variables, Income and Age, with missing values only on Income.

- Poor and rich respondents would be less incline to reveal their income.
- There are missing values for the smallest and highest values of Income.
- Even though Age and Income are related, the process that causes the missing data is not fully explained by Age.
- Knowing the value of Age is not enough to retrieve the value of Income.

Take-home message

- Knowing why the data is missing is an important issue.
- The process that causes the missing data should be modeled in some situations.

Main references

Goal of this course ${ }^{1}$

This is only an introduction to missing data.

- Dangers of naive methods in the analysis,
- Importance of the missing-data mechanism (type of missing data),
- EM algorithm for handling missing data (+R code session),
- Classical mputation methods

[^0]
Overview

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern
Missing-data mechanism

3. EM algorithm for handling missing values

4. Other methods to impute missing values

A statistical framework for incomplete data

$$
X=\underbrace{\left(\begin{array}{ccc}
30 & 100 & 61 \\
85 & 31 & 50
\end{array}\right)}_{\text {not observed }} \quad X^{\mathrm{NA}}=\underbrace{\left(\begin{array}{ccc}
30 & \text { NA } & 61 \\
\text { NA } & \text { NA } & 50
\end{array}\right)}_{\text {observed }}
$$

We observe also where are the missing values in X^{NA}.

Definition: missing-data pattern (mask)

$M \in\{0,1\}^{n \times d}$: indicates where are the missing values in X^{NA}.

$$
\forall i, j, \quad M_{i j}= \begin{cases}1 & \text { if } X_{i j}^{\mathrm{NA}} \text { is missing } \\ 0 & \text { otherwise } .\end{cases}
$$

A statistical framework for incomplete data

$$
X=\underbrace{\left(\begin{array}{ccc}
30 & 100 & 61 \\
85 & 31 & 50
\end{array}\right)}_{\text {not observed }} \quad X^{\mathrm{NA}}=\underbrace{\left(\begin{array}{ccc}
30 & \text { NA } & 61 \\
\mathrm{NA} & \text { NA } & 50
\end{array}\right)}_{\text {observed }} \quad M=\underbrace{\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right)}_{\text {observed }}
$$

Question: What to model?

- model $p\left(X^{\mathrm{NA}}\right)$: too difficult because the entries $X_{i j}^{\mathrm{NA}} \in \mathbb{R} \cup\{\mathrm{NA}\}$ (semi-discrete set).
- model $p(X, M)$: entries are in a well-behaved mathematical set $\mathbb{R}^{n \times d} \cup\{1,0\}^{n \times d}$

Model the joint distribution (X, M)

We want to model the joint distribution of the data X and the missing-data pattern M. The observations are assumed to be i.i.d., i.e. $\left(X_{1}, M_{1}\right), \ldots,\left(X_{n}, M_{n}\right)$ have the same distribution and are independent

$$
p(X, M)=\prod_{i=1}^{n} p\left(X_{i}, M_{i}\right)
$$

Model the joint distribution (X, M)

We want to model the joint distribution of the data X and the missing-data pattern M. Selection model factorization

$$
p(X, M)=p(X) p(M \mid X)
$$

where

- $p(X)$: distribution of the data,
- $p(M \mid X)$: conditional distribution of the missing-data pattern given the data, it is the missing-data mechanism.

Parametric approach:

$$
p(X, M ; \theta, \phi)=p(X ; \theta) p(M \mid X ; \phi)
$$

where $\theta \in \Omega_{\theta}$ and $\phi \in \Omega_{\phi}$.

Missing-data mechanism (Rubin, 1976)

$$
\begin{aligned}
& \text { Missing Completely At Random (MCAR) } \\
& \qquad p(M \mid X ; \phi)=p(M ; \phi)
\end{aligned}
$$

Missing At Random (MAR)
$X^{\text {obs }}$: observed component of X.

$$
p(M \mid X ; \phi)=p\left(M \mid X^{\mathrm{obs}} ; \phi\right)
$$

Missing Not At Random (MNAR)

The MAR assumption does not hold. The missingness can depend on the missing data value itself.

Question: Which mechanism is realistic? How to choose the right mechanism for real data?

Example of models

$$
p(X, M ; \theta, \phi)=p(X ; \theta) p(M \mid X ; \phi)
$$

- For $p(X)$: models seen in the rest of the course, e.g. mixture model, single Gaussian, variational autoencoder, ...
- For $p(M \mid X)$: typically Logit or Probit distribution.

$$
p\left(M_{i j} \mid X_{i j} ; \phi\right)=\left[\left(1+e^{-\phi_{1 j}\left(X_{i j}-\phi_{2 j}\right)}\right)^{-1}\right]^{M_{i j}}\left[1-\left(1+e^{-\phi_{1 j}\left(X_{i j}-\phi_{2 j}\right)}\right)^{-1}\right]^{\left(1-M_{i j}\right)} .
$$

But it is a strong assumption. We will see that in some situations, the missing-data mechanism can be ignored (not modelled).

Likelihood approach with incomplete data

- Goal of the parametric estimation: model the joint distribution (X, M) parametrized by $\theta, \phi \in \Omega_{\theta} \times \Omega_{\phi}$.
- Likelihood-approach without missing data: maximizing the full likelihood

$$
L_{\text {full }}(\theta, \phi ; X, M)=p(X ; \theta) p(M \mid X ; \phi)
$$

- Split X into two components $X^{\text {obs }}$ (observed features), $X^{\text {mis }}$ (missing features).
- Likelihood-approach with missing data: maximizing the full observed likelihood

$$
L_{\text {full,obs }}\left(\theta, \phi ; X^{\mathrm{obs}}, M\right)=\int L_{\text {full }}(\theta, \phi ; X, M) d X^{\text {mis }}
$$

Ignorable mechanisms

Question: How can we ignore the missing-data mechanism?

Ignorable mechanisms

For MCAR and MAR data, we can ignore the missing-data mechanism:

$$
L_{\text {full,obs }}\left(\theta, \phi ; X^{\text {obs }}, M\right) \propto L_{\mathrm{ign}}\left(\theta ; X^{\mathrm{obs}}\right)=\int p(X ; \theta) d X^{\mathrm{mis}}=p\left(X^{\mathrm{obs}} ; \theta\right)
$$

Take-home message

- $M(C) A R$: one can ignore the mechanism.
- MNAR: one should consider the mechanism.

Link with the logistic regression

Ignorability in missing-data analysis: to model (X, M), we can in some cases ignore the mechanism $(M \mid X)$, by treating ϕ as a nuisance parameter.

\rightarrow Similar trick for logistic regression.

- $p(x, y)=p(y \mid x ; \theta) p(x)$ with $p(x)$ which does not involve θ.
- Likelihood written as $L_{\text {full }}(\theta ; x, y)=p(y \mid x ; \theta) p(x)$.
- Goal: estimate θ.
- We do not model $p(x)$ because $\hat{\theta} \in \operatorname{argmax}_{\theta} L_{\text {full }}(\theta ; x, y)=\operatorname{argmax}_{\theta} p(y \mid x ; \theta)$

Overview

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern
Missing-data mechanism
3. EM algorithm for handling missing values
4. Other methods to impute missing values

Setting

- Goal: estimate $\theta \in \Omega_{\theta}$, when X contain MCAR or MAR values.
- We can maximize the fully observed log-likelihood (logarithm more convenient):

$$
\hat{\theta}=\operatorname{argmax}_{\theta} \ell_{\operatorname{ign}}\left(\theta ; X^{\mathrm{obs}}\right)=\log \left(p\left(X^{\mathrm{obs}} ; \theta\right)\right)
$$

- When it has no closed form, a solution can be to use the EM algorithm. Idea: consider the missing variables as latent variables.

Expectation Maximization algorithm (Dempster et al., 1977)

Starting from an initial point θ^{0}, the EM algorithm proceeds two steps iteratively:

- E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

$$
Q\left(\theta ; \theta^{r}\right)=\mathbb{E}\left[\ell_{\text {full }}(X ; \theta) \mid X^{\text {obs }}, \theta^{r}\right]
$$

- M-step: maximization of $Q\left(\theta ; \theta^{r}\right)$ over θ.

$$
\theta^{r+1}=\operatorname{argmax}_{\theta} Q\left(\theta ; \theta^{r}\right)
$$

EM algorithm in a toy example

Consider a Gaussian bivariate variable $X=\left(X_{.1}^{T}, X_{.2}^{T}\right) \in \mathbb{R}^{n \times 2}$.

$$
X \sim \mathcal{N}(\mu, \Sigma)
$$

with $\mu=\binom{\mu_{1}}{\mu_{2}}$ and $\Sigma=\left(\begin{array}{ll}\sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22}\end{array}\right)$.
$X_{.2}$ contain some $\mathbf{M}(\mathbf{C}) \mathbf{A R}$ missing values. Without loss of generality, assume that $X_{i 2}$ is missing, with $r<i \leq n$.

Question: First, we want to know if it is possible to maximize the observed log-likelihood directly. Write the observed log-likelihood.

EM algorithm in a toy example

Question: Write the observed log-likelihood.
Tip: use the classical formula $X_{i 2} \mid X_{i 1} \sim \mathcal{N}\left(\mathbb{E}\left[X_{i 2} \mid X_{i 1}\right], \operatorname{Var}\left(X_{i 2} \mid X_{i 1}\right)\right)$ with

$$
\begin{aligned}
\mathbb{E}\left[X_{i 2} \mid X_{i 1}\right] & =\mu_{2}+\frac{\sigma_{21}}{\sigma_{11}}\left(X_{i 1}-\mu_{1}\right) \\
\operatorname{Var}\left(X_{i 2} \mid X_{i 1}\right) & =\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}
\end{aligned}
$$

EM algorithm in a toy example

EM algorithm in a toy example

Question: Write the observed log-likelihood.
In this simple setting, directly maximizing the log-likelihood is possible.

$$
\begin{aligned}
\ell\left(X_{.1}, X_{.2}^{\mathrm{obs}} ; \mu, \Sigma\right)=-\frac{n}{2} \log \left(\sigma_{11}^{2}\right) & -\frac{1}{2} \sum_{i=1}^{n} \frac{\left(X_{i 1}-\mu_{1}\right)^{2}}{\sigma_{11}^{2}} \\
& -\frac{r}{2} \log \left(\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}\right)^{2}-\frac{1}{2} \sum_{i=1}^{r} \frac{\left(X_{i 2}-\mu_{2}+\frac{\sigma_{21}}{\sigma_{11}}\left(X_{i 1}-\mu_{1}\right)\right)^{2}}{\left(\sigma_{22}-\frac{\sigma_{21}^{2}}{\sigma_{11}}\right)^{2}}
\end{aligned}
$$

More fun: let us derive the EM algorithm!

EM algorithm in a toy example

E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

$$
Q\left(\theta ; \theta^{r}\right)=\mathbb{E}\left[\ell_{\text {full }}(X ; \theta) \mid X^{\text {obs }}, \theta^{r}\right]
$$

Question: Write the full log-likelihood (easy question).

EM algorithm in a toy example

Question: Write $Q\left(\theta ; \theta^{r}\right)$. What quantities should be computed in the E-step?

EM algorithm in a toy example

M-step: maximization of $Q\left(\theta ; \theta^{r}\right)$ over θ.

$$
\theta^{r+1}=\operatorname{argmax}_{\theta} Q\left(\theta ; \theta^{r}\right)
$$

Summary: EM algorithm in a toy example

- E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

$$
Q\left(\theta ; \theta^{r}\right)=\mathbb{E}\left[\ell_{\text {full }}(X ; \theta) \mid X^{\text {obs }}, \theta^{r}\right]
$$

- M-step: maximization of $Q\left(\theta ; \theta^{r}\right)$ over θ.

$$
\theta^{r+1}=\operatorname{argmax}_{\theta} Q\left(\theta ; \theta^{r}\right)
$$

Summary: EM algorithm in a toy example

- E-step: computation of
$s_{1}=\sum_{i=1}^{n} x_{i 1}$,
$s_{11}=\sum_{i=1}^{n} x_{i 1}^{2}$
$s_{2}=\sum_{i=m+1}^{n} x_{i 2}+\sum_{i=1}^{m}\left(\mu_{2}^{r}+\frac{\sigma_{21}^{r}}{\sigma_{11}^{r}}\left(x_{i 1}-\mu_{1}^{r}\right)\right)$
$s_{22}=\sum_{i=m+1}^{n} x_{i 2}^{2}+\sum_{i=1}^{m}\left(\left(\mu_{2}^{r}+\frac{\sigma_{21}^{r}}{\sigma_{11}^{r}}\left(x_{i 1}-\mu_{1}^{r}\right)\right)^{2}+\sigma_{22}^{r}-\frac{\left(\sigma_{21}^{r}\right)^{2}}{\sigma_{11}^{r}}\right)$
$s_{12}=\sum_{i=m+1}^{n} x_{i 1} x_{i 2}+\sum_{i=1}^{m} x_{i 1}\left(\mu_{2}^{r}+\frac{\sigma_{21}^{r}}{\sigma_{11}^{r}}\left(x_{i 1}-\mu_{1}^{r}\right)\right)$
- M-step: update the parameters: $\mu_{1}^{r+1}=\frac{s_{1}}{n}, \mu_{2}^{r+1}=\frac{s_{2}}{n}, \sigma_{11}^{r+1}=\frac{s_{11}}{n}-\left(\mu_{1}^{r+1}\right)^{2}$, $\sigma_{22}^{r+1}=\frac{s_{22}}{n}-\left(\mu_{2}^{r+1}\right)^{2}$ and $\sigma_{12}^{r+1}=\frac{s_{12}}{n}-\left(\mu_{1}^{r+1} \mu_{2}^{r+1}\right)$.

Summary: EM algorithm in a toy example

We have seen that the EM algorithm can be used to estimate the parameters of the underlying data distribution. Question: Can we impute missing values?
Imputation of the missing values using EM algorithm
We can use the conditional expectation.
$\forall i \in\{1, \ldots, n\}$ such that $M_{i j}=1$,

$$
X_{i 1}^{\mathrm{imp}}=\mathbb{E}\left[X_{i 2} \mid X_{i 1}\right]=\mu_{2}+\frac{\sigma_{21}}{\sigma_{11}}\left(X_{i 1}-\mu_{1}\right)
$$

Overview

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern
Missing-data mechanism
3. EM algorithm for handling missing values
4. Other methods to impute missing values

Naive imputation

Mean imputation, performing regression.

X bias in the estimates, correlation between the variables overestimated.

Low rank models

Definition: low rank matrix

$\Theta \in \mathbb{R}^{n \times d}$ has a low rank, if its rank $r \geq 1$, refereed to as the dimension of the vector space generated by its columns, is small compared to the dimensions n and d, i.e. if $r \ll \min \{n, d\}$, where \ll can be interpreted as $\exists r_{\max } \geq 1, r<r_{\max }<\min \{n, d\}$.

Low rank models: the dataset X is a noisy realisation of a low rank matrix $\Theta \in \mathbb{R}^{n \times d}$

$$
X=\Theta+\epsilon
$$

- X contain MCAR missing values.
- The goal is to estimate Θ.
- Low rank approximation is often relevant: individual profiles can be summarized into a limited number of general profiles, or dependencies between variables can be established.

Low rank models

Classical methods to handle missing values solve the following optimization problem:

$$
\hat{\Theta} \in \operatorname{argmin}_{\Theta} \underbrace{\left\|\left(1_{n \times d}-M\right) \odot(X-\Theta)\right\|_{F}^{2}}_{\text {to fit the data at best }}+\lambda
$$

to satisfy the low rank constraint
with $\lambda>0$ a regularization term, \odot the Hadamard product (by convention $0 \times \mathrm{NA}=0$) and $1_{n \times d} \in \mathbb{R}^{n \times d}$ with each of its entry equal to 1 .

R package soft Impute, Hastie et al. (2015)

Iterative algorithm: starting from an initial point Θ^{0},

- Estimation-step: perform the threshold SVD of the complete matrix

$$
X^{t}=\left(1_{n \times d}-M\right) \odot X+M \odot \Theta^{t}
$$

which leads to

$$
\operatorname{SVD}_{\lambda}\left(X^{t}\right)=U^{t} D_{\lambda}^{t} V^{t}
$$

where $U^{t} \in \mathbb{R}^{n \times r}, V^{t} \in \mathbb{R}^{r \times d}$ are orthonormal matrices containing the singular vectors of X^{t} and $D_{\lambda}^{t} \in \mathbb{R}^{r \times r}$ is a diagonal matrix such that its diagonal terms are $\left(D_{\lambda}^{t}\right)_{i i}=\max \left(\left(\sigma_{i}-\lambda\right), 0\right), i \in\{1, \ldots, r\}$, with σ_{i} the singular values of X^{t}.

- Imputation-step:: the entries of Θ^{t} corresponding to missing values in X are replaced by the values of $\operatorname{SVD}_{\lambda}\left(X^{t}\right)$,

$$
\Theta^{t+1} \odot M=\operatorname{SVD}_{\lambda}\left(X^{t}\right) \odot M
$$

R package missForest, Stekhoven and Buhlmann (2011)

Iterative Random Forests imputation

- Initial imputation: mean imputation and sort the variables according to the amount of missing values
- Repeat until convergence:
- fit a random forest with $X_{j}^{\text {obs }}$ on $X_{-j}^{\text {obs }}$ (all the observed variables except variable j) and then predict $X_{j}^{\text {mis }}$
- Cycling through variables

Multiple imputation

x Single imputation does not reflect the variability of imputation.

- Generating M plausible values for each missing values: M complete datasets, $\hat{X}^{1}, \ldots, \hat{X}^{M}$.
- Analysis performed on each imputed data set
- Results are combined.

mice (Buuren et al., 2010): use chained equations (iterative conditional distributions assuming a Bayesian framework).

Summary

Method	Simple to implement	Imputation	Confidence intervals	Main drawbacks
Single imputation	\checkmark	single	x	biased estimates if too simple imputation
Multiple imputation	\checkmark	multiple	\checkmark	combining results can be delicate
EM	x	not directly	can be obtained	specific algorithm for each statistical model

References

Little, Roderick JA and Rubin, Donald B (2019)
Statistical analysis with missing data
John Wiley \& Sons.

[^0]: ${ }^{1}$ Inspired by the courses of Pierre-Alexandre Mattei (2019-2020) and Julie Josse (2020) on missing values.

