How to handle missing values? Model-based approaches

Aude Sportisse

Postdoctoral researcher Institut 3iA Côte d'Azur & Maasai, Inria aude.sportisse@inria.fr

October 9, 2023

• Write the generative model of the linear discriminant analysis (LDA). What are the type of decisions boundaries between two classes for LDA?

$$t \sim \operatorname{Mult}(\pi_1, \ldots, \pi_K) ext{ with } \sum_{k=1}^K \pi_k = 1 ext{ and } 0 \leq \pi_k \leq 1$$

$$x|\mathcal{C}_k \sim \mathcal{N}(x|\mu_k, \Sigma) \quad \forall k \in \{1, \dots, K\}, \text{ with } \Sigma > 0$$

The decision boundary between two classes is linear (No formula is required here).

1. Introduction

- 2. Statistical framework in missing-data literature Missing-data pattern Missing-data mechanism
- 3. EM algorithm for handling missing values
- 4. Other methods to impute missing values

Your viewpoint

- unanswered questions in a survey,
- lost data,
- sensing machines that fail,
- aggregation of dataset, ...

Take-home message

Growing masses of data + Multiplication of sources \Rightarrow Not available values, NA

The more data we have, the more missing data we have!

Trauma.center	Heart rate	Death	Anticoagulant. therapy	Glascow score	*
Pitie-Salpêtrière	88	0	No	3	
Beaujon	103	0	NA	5	
Bicêtre	NA	0	Yes	6	
Bicêtre	NA	0	No	NA	
Lille	62	0	Yes	6	
Lille	NA	0	No	NA	
÷	:	:	:	:	

250 clinical variables (heterogeneous)

1 patient; in total: 30 000 patients

Trauma.center	Heart rate	Death	Anticoagulant. therapy	Glascow score
Pitie-Salpêtrière	88	0	No	3
Beaujon	103	0	NA	5
Bicêtre	NA	0	Yes	6
Bicêtre	NA	0	No	NA
Lille	62	0	Yes	6
Lille	NA	0	No	NA
÷	:	:		

The Traumabase dataset

Figure: Percentage of missing values for 40 variables.

The Traumabase dataset

Traumabase[®] dataset

- now **30 000** patients (in 2018: 10 000).
- 250 heterogeneous variables: continuous, categorical, ordinal,...
- 23 different hospitals
- missing values everywhere (1% to 90% NA in each variable).
- Imputation: provide a complete dataset to the doctors.
- Estimation: explain the level of platelet with pre-hospital characteristics.
- Prediction: predict the administration or not of the tranexomic acid.
- Clustering: identify relevant groups of patients sharing similarities.

Question: How to deal with missing values? A first naive idea?

/ Pitie-Salpêtrière	88	0	No	3 \
Beaujon	103	0	NA	5
Bicêtre	NA	0	Yes	6
Bicêtre	NA	0	No	NA
Lille	62	0	Yes	6
Lille	NA	0	No	NA /

Discarding individuals with missing values is not a solution

• Loss of information .

Traumabase \mathbb{R} : only 5% of the rows are kept.

• Bias in the analysis .

Kept observations: sub-population **not necessarily representative** of the overall population.

Example:

• We consider a bivariate Gaussian variable. $X \sim \mathcal{N}(\mu, \Sigma)$, with

$$\mu = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$
 and $\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$

- X_2 is missing.
- We estimate μ_2 with the empirical mean in the complete case.
- see Rmarkdown!

What we should not do: discard individuals

Figure: The sub-population is representative of the overall population.

What we should not do: discard individuals

Figure: The sub-population is **not** representative of the overall population.

Example: survey with two variables, Income and Age, with missing values only on Income.

- Poor and rich respondents would be less incline to reveal their income.
- There are missing values for the smallest and highest values of Income.
- Even though Age and Income are related, the process that causes the missing data is not fully explained by Age.
- Knowing the value of Age is not enough to retrieve the value of Income.

Take-home message

- Knowing **why** the data is missing is an important issue.
- The process that causes the missing data should be modeled in some situations.

Main references

This is only an **introduction** to missing data.

- Dangers of naive methods in the analysis,
- Importance of the missing-data mechanism (type of missing data),
- EM algorithm for handling missing data (+ R code session),
- Classical mputation methods

¹Inspired by the courses of Pierre-Alexandre Mattei (2019-2020) and Julie Josse (2020) on missing values.

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern Missing-data mechanism

3. EM algorithm for handling missing values

4. Other methods to impute missing values

A statistical framework for incomplete data

$$X = \underbrace{\begin{pmatrix} 30 & 100 & 61 \\ 85 & 31 & 50 \end{pmatrix}}_{\text{not observed}} \qquad X^{\text{NA}} = \underbrace{\begin{pmatrix} 30 & \text{NA} & 61 \\ \text{NA} & \text{NA} & 50 \end{pmatrix}}_{\text{observed}}$$

We observe also where are the missing values in X^{NA} .

Definition: missing-data pattern (mask)

 $M \in \{0,1\}^{n \times d}$: indicates where are the missing values in X^{NA} .

$$orall i, j, \quad M_{ij} = egin{cases} 1 & ext{if } X^{ ext{NA}}_{ij} ext{ is missing,} \ 0 & ext{otherwise.} \end{cases}$$

A statistical framework for incomplete data

Question: What to model?

- model $p(X^{NA})$: too difficult because the entries $X_{ii}^{NA} \in \mathbb{R} \cup \{NA\}$ (semi-discrete set).
- model p(X, M): entries are in a well-behaved mathematical set $\mathbb{R}^{n \times d} \cup \{1, 0\}^{n \times d}$

We want to model the **joint** distribution of the data X and the missing-data pattern M. **The observations are assumed to be i.i.d.**, i.e. $(X_1, M_1), \ldots, (X_n, M_n)$ have the same distribution and are independent

$$p(X,M) = \prod_{i=1}^{n} p(X_i, M_i).$$

Model the joint distribution (X, M)

We want to model the **joint** distribution of the data X and the missing-data pattern M.

Selection model factorization

p(X,M) = p(X)p(M|X)

where

- p(X): distribution of the data,
- p(M|X): conditional distribution of the missing-data pattern given the data, it is the **missing-data mechanism**.

Parametric approach:

$$p(X, M; \theta, \phi) = p(X; \theta) p(M|X; \phi)$$

where $\theta \in \Omega_{\theta}$ and $\phi \in \Omega_{\phi}$.

Missing-data mechanism (Rubin, 1976)

Missing Completely At Random (MCAR) $p(M|X;\phi) = p(M;\phi)$

Missing At Random (MAR)

 X^{obs} : observed component of X.

 $p(M|X;\phi) = p(M|X^{obs};\phi)$

Missing Not At Random (MNAR)

The MAR assumption does not hold. The missingness can depend on the missing data value itself.

Question: Which mechanism is realistic? How to choose the right mechanism for real data?

 $p(X, M; \theta, \phi) = p(X; \theta)p(M|X; \phi)$

- For p(X): models seen in the rest of the course, e.g. mixture model, single Gaussian, variational autoencoder, ...
- For p(M|X): typically Logit or Probit distribution.

$$p(M_{ij}|X_{ij};\phi) = [(1+e^{-\phi_{1j}(X_{ij}-\phi_{2j})})^{-1}]^{M_{ij}}[1-(1+e^{-\phi_{1j}(X_{ij}-\phi_{2j})})^{-1}]^{(1-M_{ij})}.$$

But it is a **strong assumption**. We will see that in some situations, the missing-data mechanism can be *ignored* (not modelled).

Likelihood approach with incomplete data

- Goal of the parametric estimation: model the joint distribution (X, M) parametrized by θ, φ ∈ Ω_θ × Ω_φ.
- Likelihood-approach without missing data: maximizing the full likelihood

 $L_{\text{full}}(\theta,\phi;X,M) = p(X;\theta)p(M|X;\phi)$

- Split X into two components X^{obs} (observed features), X^{mis} (missing features).
- Likelihood-approach with missing data: maximizing the full observed likelihood

$$L_{\mathrm{full,obs}}(heta,\phi;X^{\mathrm{obs}},M) = \int L_{\mathrm{full}}(heta,\phi;X,M) dX^{\mathrm{mis}}$$

Question: How can we ignore the missing-data mechanism?

For MCAR and MAR data, we can **ignore** the missing-data mechanism:

$$L_{\mathrm{full,obs}}(heta,\phi;X^{\mathrm{obs}},M) \propto L_{\mathrm{ign}}(heta;X^{\mathrm{obs}}) = \int p(X; heta) dX^{\mathrm{mis}} = p(X^{\mathrm{obs}}; heta)$$

Take-home message

- M(C)AR: one can ignore the mechanism.
- MNAR: one should consider the mechanism.

Ignorability in missing-data analysis: to model (X, M), we can in some cases ignore the mechanism (M|X), by treating ϕ as a nuisance parameter.

\rightarrow Similar trick for logistic regression.

- $p(x, y) = p(y|x; \theta)p(x)$ with p(x) which does not involve θ .
- Likelihood written as $L_{\text{full}}(\theta; x, y) = p(y|x; \theta)p(x)$.
- Goal: estimate θ .
- We do not model p(x) because $\hat{\theta} \in \operatorname{argmax}_{\theta} L_{\operatorname{full}}(\theta; x, y) = \operatorname{argmax}_{\theta} p(y|x; \theta)$

1. Introduction

2. Statistical framework in missing-data literature Missing-data pattern Missing-data mechanism

3. EM algorithm for handling missing values

4. Other methods to impute missing values

- Goal: estimate $\theta \in \Omega_{\theta}$, when X contain **MCAR or MAR** values.
- We can maximize the fully observed **log**-likelihood (logarithm more convenient):

$$\hat{\theta} = \operatorname{argmax}_{\theta} \ell_{\operatorname{ign}}(\theta; X^{\operatorname{obs}}) = \log(\rho(X^{\operatorname{obs}}; \theta))$$

• When it has no closed form, a solution can be to use the EM algorithm. Idea: consider the missing variables as latent variables. Starting from an initial point θ^0 , the EM algorithm proceeds two steps **iteratively**:

• E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

$$Q(heta; heta^r) = \mathbb{E}[\ell_{\mathrm{full}}(X; heta)|X^{\mathrm{obs}}, heta^r]$$

• **M-step:** maximization of $Q(\theta; \theta^r)$ over θ .

 $\theta^{r+1} = \operatorname{argmax}_{\theta} Q(\theta; \theta^r)$

Consider a Gaussian bivariate variable $X = (X_{.1}^T, X_{.2}^T) \in \mathbb{R}^{n \times 2}$.

 $X \sim \mathcal{N}(\mu, \Sigma),$ with $\mu = \begin{pmatrix} \mu_1 \\ \mu_2 \end{pmatrix}$ and $\Sigma = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix}.$

 $X_{.2}$ contain some **M(C)AR missing values**. Without loss of generality, assume that X_{i2} is missing, with $r < i \le n$.

Question: First, we want to know if it is possible to maximize the observed log-likelihood directly. Write the observed log-likelihood.

Question: Write the observed log-likelihood.

Tip: use the classical formula $X_{i2}|X_{i1} \sim \mathcal{N}(\mathbb{E}[X_{i2}|X_{i1}], \operatorname{Var}(X_{i2}|X_{i1}))$ with

$$\mathbb{E}[X_{i2}|X_{i1}] = \mu_2 + \frac{\sigma_{21}}{\sigma_{11}}(X_{i1} - \mu_1)$$
$$\operatorname{Var}(X_{i2}|X_{i1}) = \sigma_{22} - \frac{\sigma_{21}^2}{\sigma_{11}}$$

EM algorithm in a toy example

Question: Write the observed log-likelihood.

In this simple setting, directly maximizing the log-likelihood is possible.

$$\ell(X_{.1}, X_{.2}^{\text{obs}}; \mu, \Sigma) = -\frac{n}{2} \log(\sigma_{11}^2) - \frac{1}{2} \sum_{i=1}^n \frac{(X_{i1} - \mu_1)^2}{\sigma_{11}^2} \\ -\frac{r}{2} \log\left(\sigma_{22} - \frac{\sigma_{21}^2}{\sigma_{11}}\right)^2 - \frac{1}{2} \sum_{i=1}^r \frac{(X_{i2} - \mu_2 + \frac{\sigma_{21}}{\sigma_{11}}(X_{i1} - \mu_1))^2}{\left(\sigma_{22} - \frac{\sigma_{21}^2}{\sigma_{11}}\right)^2}$$

More fun: let us derive the EM algorithm!

E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

$$Q(heta; heta^r) = \mathbb{E}[\ell_{\mathrm{full}}(X; heta)|X^{\mathrm{obs}}, heta^r]$$

Question: Write the full log-likelihood (easy question).

Question: Write $Q(\theta; \theta^r)$. What quantities should be computed in the E-step?

M-step: maximization of $Q(\theta; \theta^r)$ over θ .

 $\theta^{r+1} = \operatorname{argmax}_{\theta} Q(\theta; \theta^r)$

• E-step: computation of the expected full log-likelihood knowing the observed data and a current value of the parameters.

 $Q(heta; heta^r) = \mathbb{E}[\ell_{\mathrm{full}}(X; heta)|X^{\mathrm{obs}}, heta^r]$

• **M-step:** maximization of $Q(\theta; \theta^r)$ over θ .

 $\theta^{r+1} = \operatorname{argmax}_{\theta} Q(\theta; \theta^r)$

Summary: EM algorithm in a toy example

- E-step: computation of
 - $s_{1} = \sum_{i=1}^{n} x_{i1},$ $s_{11} = \sum_{i=1}^{n} x_{i1}^{2},$ $s_{2} = \sum_{i=m+1}^{n} x_{i2} + \sum_{i=1}^{m} \left(\mu_{2}^{r} + \frac{\sigma_{21}^{r}}{\sigma_{11}^{r}} (x_{i1} \mu_{1}^{r}) \right)$ $s_{22} = \sum_{i=m+1}^{n} x_{i2}^{2} + \sum_{i=1}^{m} \left(\left(\mu_{2}^{r} + \frac{\sigma_{21}^{r}}{\sigma_{11}^{r}} (x_{i1} \mu_{1}^{r}) \right)^{2} + \sigma_{22}^{r} \frac{(\sigma_{21}^{r})^{2}}{\sigma_{11}^{r}} \right)$ $s_{12} = \sum_{i=m+1}^{n} x_{i1} x_{i2} + \sum_{i=1}^{m} x_{i1} \left(\mu_{2}^{r} + \frac{\sigma_{21}^{r}}{\sigma_{11}^{r}} (x_{i1} \mu_{1}^{r}) \right)$
- **M-step:** update the parameters: $\mu_1^{r+1} = \frac{s_1}{n}$, $\mu_2^{r+1} = \frac{s_2}{n}$, $\sigma_{11}^{r+1} = \frac{s_{11}}{n} (\mu_1^{r+1})^2$, $\sigma_{22}^{r+1} = \frac{s_{22}}{n} (\mu_2^{r+1})^2$ and $\sigma_{12}^{r+1} = \frac{s_{12}}{n} (\mu_1^{r+1}\mu_2^{r+1})$.

We have seen that the EM algorithm can be used to **estimate the parameters** of the underlying data distribution. **Question:** Can we impute missing values?

Imputation of the missing values using EM algorithm

We can use the conditional expectation.

$$orall i \in \{1,\ldots,n\}$$
 such that $M_{ij}=1$,

$$X_{i1}^{ ext{imp}} = \mathbb{E}[X_{i2}|X_{i1}] = \mu_2 + rac{\sigma_{21}}{\sigma_{11}}(X_{i1} - \mu_1)$$

1. Introduction

- 2. Statistical framework in missing-data literature Missing-data pattern Missing-data mechanism
- 3. EM algorithm for handling missing values
- 4. Other methods to impute missing values

Naive imputation

Mean imputation, performing regression.

× bias in the estimates, correlation between the variables overestimated.

Definition: low rank matrix

 $\Theta \in \mathbb{R}^{n \times d}$ has a *low rank*, if its rank $r \ge 1$, refereed to as the dimension of the vector space generated by its columns, is small compared to the dimensions n and d, i.e. if $r \ll \min\{n, d\}$, where \ll can be interpreted as $\exists r_{\max} \ge 1, r < r_{\max} < \min\{n, d\}$.

Low rank models: the dataset X is a **noisy** realisation of a low rank matrix $\Theta \in \mathbb{R}^{n \times d}$

 $X = \Theta + \epsilon.$

- X contain MCAR missing values.
- The goal is to estimate Θ .
- Low rank approximation is often relevant: individual profiles can be summarized into a limited number of general profiles, or dependencies between variables can be established.

Classical methods to handle missing values solve the following optimization problem:

$$\hat{\Theta} \in \operatorname{argmin}_{\Theta} \underbrace{\|(\mathbf{1}_{n \times d} - M) \odot (X - \Theta)\|_{F}^{2}}_{\text{to fit the data at best}} + \lambda \underbrace{\|\Theta\|_{\star}}_{\text{to satisfy the low rank constraint}},$$

with $\lambda > 0$ a regularization term, \odot the Hadamard product (by convention $0 \times NA = 0$) and $1_{n \times d} \in \mathbb{R}^{n \times d}$ with each of its entry equal to 1.

R package softImpute, Hastie et al. (2015)

Iterative algorithm: starting from an initial point Θ^0 ,

• Estimation-step: perform the threshold SVD of the complete matrix

$$X^t = (1_{n \times d} - M) \odot X + M \odot \Theta^t,$$

which leads to

$$\mathrm{SVD}_{\lambda}(X^t) = U^t D^t_{\lambda} V^t,$$

where $U^t \in \mathbb{R}^{n \times r}$, $V^t \in \mathbb{R}^{r \times d}$ are orthonormal matrices containing the singular vectors of X^t and $D^t_{\lambda} \in \mathbb{R}^{r \times r}$ is a diagonal matrix such that its diagonal terms are $(D^t_{\lambda})_{ii} = \max((\sigma_i - \lambda), 0), i \in \{1, \dots, r\}$, with σ_i the singular values of X^t .

 Imputation-step:: the entries of Θ^t corresponding to missing values in X are replaced by the values of SVD_λ(X^t),

$$\Theta^{t+1} \odot M = \mathrm{SVD}_{\lambda}(X^t) \odot M.$$

Iterative Random Forests imputation

- Initial imputation: mean imputation and sort the variables according to the amount of missing values
- Repeat until convergence:
 - fit a random forest with X_j^{obs} on X_{-j}^{obs} (all the observed variables except variable j) and then predict X_j^{mis}
 - Cycling through variables

 \checkmark Single imputation does not reflect the variability of imputation.

- Generating M plausible values for each missing values: M complete datasets, $\hat{X}^1, \dots, \hat{X}^M$.
- Analysis performed on each imputed data set
- Results are combined.

mice (Buuren et al., 2010): use chained equations (iterative conditional distributions assuming a Bayesian framework).

Method	Simple to implement	Imputation	Confidence intervals	Main drawbacks
Single	(single	×	biased estimates if
imputation	v	Single	^	too simple imputation
Multiple		multiple 🗸	.(combining results
imputation	v		v	can be delicate
EN/	×	not directly	can be	specific algorithm for
			obtained	each statistical model

Little, Roderick JA and Rubin, Donald B (2019) Statistical analysis with missing data John Wiley & Sons.