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Missing values are everywhere

Growing masses of data, multiplication of sources
⇒ Not Available values (NA)

Our public health application: the Traumabase® dataset.

Trauma.center
Heart
rate

Death
Anticoagulant.

therapy
Glascow

score
. . .

Pitie-Salpêtrière 88 0 No 3
Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA

...
...

...
...

...

250 clinical

variables

(heterogeneous)

1 patient; in total: 30 000 patients
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Missing values are everywhere

Traumabase® dataset
now 30 000 patients (begin of this PhD thesis: 10 000).

250 heterogeneous variables: continuous, categorical, ordinal,...

23 different hospitals

missing values everywhere (1% to 90% NA in each variable).

Imputation: provide a complete dataset to the doctors.

Estimation: explain the level of platelet with pre-hospital
characteristics.

Prediction: predict the administration or not of the tranexomic
acid.

Clustering: identify relevant groups of patients sharing similarities.

Q: How to deal with missing values?
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What we should not do


Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA




Pitie-Salpêtrière 88 0 No 3

Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA



Discarding individuals with missing values is not a solution

Loss of information .

Traumabase®: only 5% of the rows are kept.

Bias in the analysis .

Kept observations: sub-population not necessarily
representative of the overall population.

What we should do: handling missing values
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The right method to choose

Q: How to choose the right method to handle missing values?

Dataset containing
missing values

What we know:
location of NA

Question 1

Why do missing
values occur?

Question 2

What is the
purpose of the sta-

tistical analysis?

The right method
to choose

Imputation? Estimation? Prediction?

The goal is not necessarily to obtain a complete dataset.

A solution can be to embed missing data management into
the statistical paradigm.
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Missing-data pattern

X = (X1.| . . . |Xn.)
T data sample of n observations , d variables

Xi. = (Xi1, . . . ,Xid)T ∈ X , with X d -dimensional features space

X obs
i. (Xmis

i. ): observed (missing) variables for the individual i .

Missing-data pattern

M ∈ {0, 1}n×d : indicates where are the missing values in X .

∀i , j , Mij =

{
1 if Xij is missing,

0 otherwise.

Pitie-Salpêtrière 88 0 No 3
Beaujon 103 0 NA 5
Bicêtre NA 0 Yes 6
Bicêtre NA 0 No NA

Lille 62 0 Yes 6
Lille NA 0 No NA

→

0 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 0 0
0 1 0 0 1

We observe: X � (1−M),M and not X
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Missing-data mechanism (Rubin, 1976)

Data values (X ) Missing values (M)
Link?

fM|X (M|X ;φ), φ ∈ Ωφ

Missing Completely At Random (MCAR)

fM|X (M|X ;φ) = fM(M;φ)

Missing At Random (MAR)

X obs: observed component of X .

fM|X (M|X ;φ) = fM|Xobs(M|X obs;φ)

Missing Not At Random (MNAR)

The MAR assumption does not hold.
The missingness can depend on the
missing data value itself.

MCAR

Machines fail,

Doctors forget to fill the form

MAR

Aggregation of datasets

HR Death A. therapy GCS

Lille 65 0 Yes 6
Lille 59 0 No 4
Pitié 62 0 NA 6
Pitié 84 0 NA 5

MNAR

Emergency situations
HR

65
59
62
NA

”underlying” values:

HR

65
59
62
84
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Key tools for missing-data analysis

Parametric estimation: model the joint distribution (X ,M)
parametrized by θ, φ ∈ Ωθ,φ.

Likelihood-approach: maximizing the full observed likelihood.

Lfull,obs(θ, φ;X obs,M) =

∫
Lfull(θ, φ;X ,M)dXmis

=

∫
f (X ; θ)f (M|X ;φ)dXmis

= f (M|X obs;φ)

∫
f (X ; θ)dXmis M(C)AR mecha.

∝ Lign(θ;X obs) =

∫
f (X ; θ)dXmis

M(C)AR: one can ignore the mechanism.

MNAR: one should consider the mechanism.
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Classical methods for M(C)AR data

Most of the methods dedicated to MCAR.
EM algorithm for estimation [Dempster et al., 1977].
Multiple imputation for estimation and to get the variance of the estimates
[Buuren and Groothuis-Oudshoorn, 2010].
Matrix completion [Hastie et al., 2015, Mattei and Frellsen, 2019].

In this PhD thesis: focus on MNAR.
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MNAR from every angle

We should consider (X ,M) (not-ignorable mechanism).

The main MNAR specifications

selection model [Heckman, 1979]:

fX ,M(X ,M; θ, φ) = fX (X ; θ)fM|X (M|X ;φ)

pattern-mixture model [Little, 1993]:

fX ,M(X ,M; ξ, ϕ) = fM(M; ξ)fX |M(X |M;ϕ)

Q: How to choose the MNAR specification ?

Estimate the parameters of the data distribution: selection models.

Model the data distribution in the strata defined by different
missing-data patterns: pattern-mixture models.
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MNAR from every angle

We should prove the identifiability of the parameters.

Identifiability issue in the MNAR case Credit: Ilya Shpitser

XNA = [1,NA, 0, 1,NA, 0].

Case 1: X missing only if X = 1 .

X = [1, 1 , 0, 1, 1 , 0], P(X = 1) = 2/3.

Case 2: X missing only if X = 0 .

X = [1, 0 , 0, 1, 0 , 0], P(X = 1) = 1/3.

⇒ We start from 2 equal observed distribution. It leads to different
parameters of the data distribution P(X = 1).

Identifiability: the parameters of (X ,M) are uniquely determined from
available information (X ,M = 0).

12/65



MNAR from every angle

Specific methods should be used.

Existing methods for MNAR data

Model the joint distribution (X ,M) [Ibrahim et al., 1999].

Costly, done for few missing variables, specific missing-data
mechanism.

Semi-parametric models: model either X or M|X
[Tang and Ju, 2018]

For regression model when Y is missing and not X .

Available-case analysis without modeling the missing-data
mechanism [Mohan et al., 2018].

for linear regression.

XNA =


12 28 NA

23 NA 89
32 6 24
...

...
...

NA 3 7

 , XAC =


12 28 ��NA
23 ��NA 89
32 6 24
...

...
...

��NA 3 7
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What this thesis is about

Handling MNAR data in low-rank models
With fixed effects
EM algorithm, MNAR

With random effects
available-case analysis, MNAR, identifiability

Handling missing data in statistical learning frameworks
Online linear regression
naive imputation + debiasing, SGD, heterogeneous MCAR

Model-based clustering
EM algorithms, MNAR, identifiability

R-miss-tastic: https://rmisstastic.netlify.app/

With Imke Mayer, Julie Josse, Nicholas Tierney and Nathalie Vialaneix.

Main methods, references.

Implementations (in R and python) for managing missing data,
whether to impute, estimate or predict.
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Outline

1 Introduction

2 Low-rank models
Fixed effects
Random effects

3 Supervised and unsupervised learning frameworks
Linear regression with SGD
Model-based clustering

4 Conclusion
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Low-rank model with fixed effects

X ∈ Rn×d noisy realisation of a low-rank matrix Θ ∈ Rn×d :

X = Θ + ε , where

{
Θ with rank r < min{n, d},
εij
⊥⊥∼ N (0, σ2),∀i ∈ [1, n] .

Xij
⊥⊥∼ N (Θij , σ

2), σ2 is assumed to be known.

Access only to the missing-data matrix X � (1−M),

How to estimate Θ ? How to impute missing values ?

M(C)AR data: convex relaxation of the rank

Θ̂ ∈ argminΘ ‖(1−M)� (X −Θ)‖2︸ ︷︷ ︸
fits the data at best

+ λ‖Θ‖?︸ ︷︷ ︸
captures the low rank structure

,

λ ∈ R: regularization term.

‖Θ‖? =
∑rankΘ

i=1 σi (Θ), with σi (Θ) the singular values of Θ.

Equivalence with the EM algorithm.

Imputation and low-rank estimation with Missing Not At Random data (2019-2020, Statistics
Computing, Springer), Aude Sportisse, Claire Boyer, Julie Josse
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Method 1: modelling the mechanism
self-masked MNAR mechanism (with a logit link)

fM|X (Mij |Xij ;φ) = [(1 + e−φ1j (Xij−φ2j ))−1]Mij

[1− (1 + e−φ1j (Xij−φ2j ))−1](1−Mij ).

Maximize Lfull,obs(Θ, φ;X obs,M) =
∫
fX (X ; Θ)fM|X (M|X ;φ)dXmis

EM algorithm [S., Boyer, Josse 2020]

E-step:

Q(Θ, φ|Θr , φr ) = EXmis

[
Lfull(Θ, φ;X ,M)|X obs,M; Θr , φr

]
M-step: Θr+1, φr+1 ∈ argmaxΘ,φ Q(Θ, φ|Θr , φr ) + λ‖Θ‖?

E-step: Monte-Carlo approximation and SIR algorithm.
M-step: Separability of Q:

Θ: softImpute [Hastie and Mazumder, 2015], FISTA
φ: Newton-Raphson algorithm.

Handling MNAR data (under a self-masked logistic model) but

computationally costly .
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Method 2: implicitly modelling the mechanism

Add the mask !


X1 X2

1 2
3 NA

NA 4


︸ ︷︷ ︸

To estimate Θ

→


X1 X2 M1 M2

1 2 0 0
3 NA 0 1

NA 4 1 0


︸ ︷︷ ︸

To estimate Ξ

Solve the classical MAR optimization problem

Ξ̂ ∈ argminΞ
1
2‖ [(1−M)� X |M] −[M|1]�Ξ‖2

F + λ‖Ξ‖?,

softImpute, FISTA.

taking into account the mask binary type, with a Penalized
Iteratively Reweighted Least Squares algorithm [Robin et al., 2020].

Computationally efficient but no theoretical guaranties .
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Results on real data
' 3200 patients with brain trauma injury, 9 quantitative variables
containing missing values are selected by doctors.
Numerical comparison:

Methods which consider MAR data (in blue): the regularized
iterative PCA and the matrix completion softImpute algorithms.
Method 1 by considering MNAR data (in red) with softImpute for
the M-step.
Method 2 by adding the mask (in green) with the matrix completion
softImpute algorithm and mimi which takes into account the binary
type of the mask.

Imputation performances

0.3
0.4
0.5
0.6
0.7

me
an

PC
A

so
ft

mi
mi

MAR
Mask
Model
Generic

Error 
committed 

on the 
predicted 
missing 
values 

Texte
Error 

committed 
on the 

predicted 
values 
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Perspectives

2 solutions with drawbacks (either computational or theoretical)

Modelling the mechanism is costly.

Q: Is there a solution for dealing with missing data in low-rank models,
without modelling the mechanism and theoretically sound ?

Graphical representation in a low-rank model?

Available-case analysis without modeling the missing-data mechanism,
specifically in the linear regression [Mohan et al., 2018].

XNA =


12 28 NA

23 NA 89
32 6 24
...

...
...

NA 3 7

, XAC =


12 28 ��NA
23 ��NA 89
32 6 24
...

...
...

��NA 3 7
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Outline

1 Introduction

2 Low-rank models
Fixed effects
Random effects

3 Supervised and unsupervised learning frameworks
Linear regression with SGD
Model-based clustering

4 Conclusion
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Probabilistic Principal Component Analysis
Xi. = α + BTW T

i. + εi. with
the median effect: α ∈ Rd ,
the loading matrix: B ∈ Rr×d with a rank r < min{n, d},
the r latent variables Wi. ∼ N (0r , Idr×r ),
the noise term εi. ∼ N (0d , σ

2Idd×d).

⇒ Xi. ∼ N (α,Σ), Σ = BTB + σ2Idd×d

X contains several MNAR variables.

How to estimate α,Σ and B? How to impute missing values?

Estimation and Imputation in Probabilistic Principal Component Analysis with Missing Not At
Random Data (NeurIPS 2020), Aude Sportisse, Claire Boyer, Julie Josse
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Theoretical results

Assumptions for identifiability and consistency results:

The mechanism of any MNAR variable X.m can depend on all the
variables except r called the pivot variables.

The pivot variables are MCAR or observed.

The missing-data patterns are independent given the data:

∀(k, `) ∈ {1, . . . , d}, k 6= `, M:k ⊥⊥ M:`|Y

Patterns are independent given the data
Pivot variables

MNAR variables
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Theoretical results

Assumptions for identifiability and consistency results:

The mechanism of any MNAR variable X.m can depend on all the
variables except r called the pivot variables.

The pivot variables are MCAR or observed.

The missing-data patterns are independent given the data:

∀(k, `) ∈ {1, . . . , d}, k 6= `, M:k ⊥⊥ M:`|Y

Only for identifiability: The MNAR variables are self-masked.

Proposition 1: identifiability [S., Boyer, Josse 2020]

(α,Σ) are identifiable.

the missing mechanism parameters are identifiable.

B is identifiable up to a row permutation.
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Toy example

d = 3, r = 2.(
X.1 X.2 X.3

)
= 1

(
α1 α2 α3

)
+
(
W.1 W.2

)
B + ε

X.1 is MNAR (self-masked in this case).

As r = 2, it requires two pivot variables , say X.2 and X.3 which are

independent of the missing-data pattern M.1 .

pivot variable
pivot 
variable
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Toy example

d = 3, r = 2.(
X.1 X.2 X.3

)
= 1

(
α1 α2 α3

)
+
(
W.1 W.2

)
B + ε

X.1 is MNAR (self-masked in this case).

As r = 2, it requires two pivot variables , say X.2 and X.3 which are

independent of the missing-data pattern M.1 .

X.2 X.1 X.3

W.1 W.2

M.1

Graphical model for ”fully-connected” PPCA model
any variable is generated by all the latent variables.
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Mean estimation

X.2 X.1 X.3

W.1 W.2

M.1

X.2 X.1 X.3

M.1

X.3 X.1 X.2

M.1

We can exploit the link between the variables.

X.2 = B2→1,3[0]︸ ︷︷ ︸
Mean effect of X.2 on X.1 and X.3

+

Effect of X.2 on X.1︷ ︸︸ ︷
B2→1,3[1] X.1+ B2→1,3[3]︸ ︷︷ ︸

Effect of X.2 on X.3

X.3+

noise︷︸︸︷
ζ

It is a linear approximation: E[ζ|X.1,X.3] 6= 0.
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Mean estimation
X.2 X.1 X.3

W.1 W.2

M.1

Effects of X.2 on X.1 and X.3 in the complete case when M.1 = 0 :

(X.2)|M.1=0 := Bc2→1,3[0] + Bc2→1,3[1]X.1 + Bc2→1,3[2]X.3 + ζc ,

As X.2 ⊥⊥ M.1|X.1,X.3, one has

E [X.2|X.1,X.3,M.1 = 0] = E
[
Bc2→1,3[0] + Bc2→1,3[1]X.1 + Bc2→1,3[3]X.3|X.1,X.3

]
.

Taking the expectation,

E [X.2] = Bc2→1,3[0] + Bc2→1,3[1]E [X.1] + Bc2→1,3[3]E [X.3] .

Mean formula

α1 =
α2 − Bc2→1,3[0] − B

c
2→1,3[3]α3

Bc2→1,3[1]

,

given that Bc
2→1,3[1]

6= 0.
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Consistency results

Natural estimator for the mean:

α̂1 :=
α̂2 − B̂c2→1,3[0] − B̂

c
2→1,3[3]α̂3

B̂c2→1,3[1]

.

Consistency for the mean of X.1
Assume that:

There exist consistent estimators for α2 and α3.

There exist consistent estimators for Bc2→1,3[0], B
c
2→1,3[1] and

Bc2→1,3[3].

Then, the estimator α̂1 is consistent.
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Estimation in practice

Definition of a mean estimator:

α̂1 :=
α̂2 − B̂c2→1,3[0] − B̂

c
2→1,3[3]α̂3

B̂c2→1,3[1]

.

α̂2 and α̂3 are computed
as empirical quantities.

α̂2 = X̄.2
α̂3 = X̄.3

X =



X.1 X.2 X.3

12 28 31

��NA 23 89
32 6 24
.
.
.

.

.

.
.
.
.

��NA 3 7



(Bc2→1,3[k])k∈{0,1,3} estimated by the
coefficients of the linear regression of
X.2 on X.1 and X.3 using the rows
where X.1 is observed.

X =



X.1 X.2 X.3

12 28 31
NA 23 89
32 6 24
.
.
.

.

.

.
.
.
.

NA 3 7
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Estimation of the loading matrix B

Same methodology for the variance and covariances.

Estimators obtained from the formulae:

Σ̂ =

 V̂ar(X.1) Ĉov(X.1,X.2) Ĉov(X.1,X.3)

Ĉov(X.2,X.1) V̂ar(X.2) Ĉov(X.2,X.3)

Ĉov(X.3,X.1) Ĉov(X.3,X.2) V̂ar(X.3)


.

Assuming that σ2 is known,

X ∼ N

α1

α2

α3

 ,BTB + σ2Id

⇒ Σ̂− σ2Id3×3 estimates BTB.

Singular value decomposition:

Σ̂− σ2Id3×3 =: ÛD̂ÛT , with Û = (û1|û2|û3).

Assuming that r = 2,

B̂ = D̂
1/2
|2 ÛT

|2 =

(√
d̂1 0

0
√
d̂2

)(
ûT1
ûT2

)
.
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Imputation of the missing values in X

Impute the missing values Xi1 for i ∈ {1, . . . , n} such that Mi1 = 0 using
the conditional expectation of (Xi1) given Xi2 and Xi3.

X =



X.1 X.2 X.3

12 28 31
NA 23 89
32 6 24
.
.
.

.

.

.
.
.
.

NA 3 7

→ X =



X.1 X.2 X.3

12 28 31
16 23 89
32 6 24
.
.
.

.

.

.
.
.
.

21 3 7


The methodology is extended to the general case

for any continuous data

with p covariates, r latent variables and d missing variables.

X.1 . . . X.r X.m1
. . . X.md

. . . X.p

W.1 W.2 . . . W.r

M.m1
M.md
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Results on real data

' 3200 patients with brain trauma injury, 9 quantitative variables
containing missing values are selected by doctors.

Comparison with:

EMMAR: EM algorithm to perform PPCA with MAR data.
SoftMAR: matrix completion algorithm for MAR data, softImpute.
MNARparam: our method for low-rank models with fixed effect.
Mean: imputation by the mean.

Imputation performances
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Linear regression model

Context
Large-scaling: large number of observations, large d .

Online-setting: the data come as it goes along.

(Xi :, yi )i≥1 ∈ Rd × R i.i.d. observations

yi = XT
i : β

? + εi ,

parametrized by β? ∈ Rd , with a noise term εi ∈ R.

Heterogeneous MCAR setting: different missing probability for
each covariate.

How to estimate β? ?

Debiasing Stochastic Gradient Descent to handle missing values (NeurIPS 2020), Aude
Sportisse, Claire Boyer, Aymeric Dieuleveut, Julie Josse
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Stochastic Gradient Descent algorithm
Without missing values:

Optimization problem

For yi = XT
i : β

? + εi , loss function: fi (β) = (〈Xi :, β〉 − yi )
2
/2.

True risk minimization:

β? = argminβ∈Rd

{
R(β) := E(Xi :,yi ) [fi (β)]

}
SGD: using unbiased estimates of ∇R(βk−1).

βk = βk−1 − αgk(βk−1)

where α is the step-size and gk(βk−1) = ∇fk(βk−1).

E [gk(βk−1)|σ(X1:, y1, . . . ,Xk−1:, yk−1)] = ∇R(βk−1),

Averaged SGD: using the Polyak-Ruppert averaged iterates.

β̄k =
1

k + 1

k∑
i=0

βi

Large-data scaling and optimal convergence rate of O(k−1).

[Bach and Moulines, 2013]
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Debiasing the gradient

With missing values:

Online-streaming: for a new observation (XNA
k: , yk)

Imputing the missing values by 0.

X̃k: = Xk: � (1−Mk:) imputed covariates

Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that

E [g̃k(βk−1) |σ(X1:, y1,M.1 . . . ,Xk−1:, yk−1,M.k−1)] = ∇R(βk−1)
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Debiasing the gradient

Algorithm 1 Averaged SGD for Heterogeneous Missing Data

Input: data X̃ , y , α (step size)
Initialize β0 = 0d .
Set P = diag

(
(pj)j∈{1,...,d}

)
∈ Rd×d .

for k = 1 to n do
g̃k (βk−1) = P−1X̃k:

(
X̃T
k:P
−1βk−1 − yk

)
− (I− P)P−2diag

(
X̃k:X̃

T
k:

)
βk−1

βk = βk−1 − αg̃k(βk−1)
β̄k = 1

k+1

∑k
i=0 βi = k

k+1
β̄k−1 + 1

k+1
βk

end for

p = 1⇒ P−1 = Id standard least squares stochastic algorithm.

Computation cost for the gradient still low.

Trivially extended to ridge regularization (no change for the
gradient): minβ∈Rd R(β) + λ‖β‖2, λ > 0
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Theoretical results

Goal: establish a convergence rate

by controlling the noise introduced by NAs

Assumptions on the data: (Xk:, yk) ∈ Rd × R i.i.d., E[‖Xk:‖2] and E[y 2
k ]

finite, H := E(Xk:,yk )[Xk:X
T
k: ] invertible.

Lemmas 2, 3 [S., Boyer, Dieuleveut, Josse, 2020]

The noise induced by the imputation by 0 is structured.

(g̃k(β?))k are a.s. co-coercive.
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Theoretical results

Theorem: convergence rate of O(k−1), streaming setting

Assume for any i , ‖Xi :‖ ≤ γ almost surely for some γ > 0. For any
constant step-size α ≤ 1

2L , our algorithm ensures that, for any k ≥ 0:

E
[
R
(
β̄k
)
− R(β?)

]
≤ 2

k

 √
c(β?)d︸ ︷︷ ︸

variance term

+
‖β0 − β?‖√

α︸ ︷︷ ︸
bias term


2

,

L := supk,D Lipschitz constants of g̃k

pm = minj=1,...d pj minimal probability to be observed among the
variables.

c(β?) =

classical term︷ ︸︸ ︷
Var(εk)

p2
m

+

multiplicative noise (due to naive imputation)︷ ︸︸ ︷(
7(1− pm)

p3
m

)
γ2‖β?‖2

︸ ︷︷ ︸
increasing with the missing values rate

.
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Theoretical results

Theorem 4 [S., Boyer, Dieuleveut, Josse 2020]

Assume for any i , ‖Xi :‖ ≤ γ almost surely for some γ > 0. For any
constant step-size α ≤ 1

2L , our algorithm ensures that, for any k ≥ 0:

E
[
R
(
β̄k
)
− R(β?)

]
≤ 2

k

 √
c(β?)d︸ ︷︷ ︸

variance term

+
‖β0 − β?‖√

α︸ ︷︷ ︸
bias term


2

,

convergence rate of O(k−1)

Optimal rate for least-squares regression.

Same bound as Bach and Moulines in the complete case.
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What impact on missing values?

(1) Fewer complete observations is better than more incomplete
ones: is it better to access 200 incomplete observations (with a
probability 50% of observing) or to have 100 complete observations?

Variance bound scales as σ2d
kp / Variance bound scales as σ2d

kp2

The variance bound for 200 incomplete observations (with a probability

50% of observing) is twice as large as for 100 complete observations.
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What impact on missing values ?

(2) We do better than discarding all observations which contain
missing values:

X =



X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7

 X =



X1 X2 X3

12 28 31
NA 23 89
32 6 24
...

...
...

NA 3 7


In the homogeneous case: our strategy has an

upper-bound pd−3 smaller than the lower bound of any algorithm
relying only on the complete observations.
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Results on real data

Goal: model the level of platelet upon arrival at the hospital from
the clinical data of 15785 patients.

Explanatory variables selected by doctors: seven quantitative
(missing) variables.

Model estimation: do the effect of the variables on the platelet make
sense ?

Similar results than EM algorithm, the effects are in agreement with
the doctors’ opinion, except for HR and ∆.Hemo variables.

Variable Effect NA %
Lactate − 16%
∆.Hemo + 16%
VE − 9%
RBC − 8%
SI − 2%
HR + 1%
Age − 0%
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2 Low-rank models
Fixed effects
Random effects

3 Supervised and unsupervised learning frameworks
Linear regression with SGD
Model-based clustering

4 Conclusion
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Mixture model-based clustering

MNAR: model the joint distribution (X ,M) as for low rank methods.

Partition with K clusters: Z = (Z1| . . . |Zn)T ∈ {0, 1}n×K
Zik = 1 if xi belongs to cluster k.

f (Xi ;π, θ) =
K∑

k=1

=P(Zik=1)︷︸︸︷
πk fk(Xi ; θk)︸ ︷︷ ︸

pdf in the cluster k

We choose the selection models specification:

P(Xi ,Mi |Zi ) = P(Xi |Zi )P(Mi |Xi ,Zi ;φ)

Identifiability.
Estimation of θ, π.

Work in progress with Christophe Biernacki, Claire Boyer, Gilles Celleux, Julie
Josse, Fabien Laporte and Matthieu Marbac-Lourdelle.
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Proposed zoology of MNAR models in
clustering

Conditional independence of the missing-data patterns.

P(Mi |Xi ,Zik = 1;φ) =
d∏

j=1

P(Mij |Xi ,Zik = 1;φ)

MNARxkz j where

P(Mij = 1 | Xi ,Zik = 1;φ) = ρ( φz kj + φx kjXij),

with ρ: cdf of any continuous distribution (logit, probit)

φz ∈ RKd : missingness depends on the class membership k ,

not the same effect for every variable .

φx ∈ RKd : missingness depends on the value itself Xij ,

not the same for each cluster .
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Proposed zoology of MNAR models in
clustering

MNARxkz j

MNARxz MNARxkzMNARxz j

MNARz j

MNARz

MNARxk

MNARx

MNAR x (self-masked): P(Mij = 1 | Xi ,Zik = 1;φ) = ρ( φx
jXij).

MNAR z : P(Mij = 1 | Xi ,Zik = 1;φ) = ρ( φz
k).
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MNARz from every angle

(1) M depends on X through Z

P(Mij = 1|Xi ; θ, φ) =
K∑

k=1

P(Mij = 1|Xi ,Zik = 1;φ)P(Zik = 1|Xi ; θ)

(2) M gives information on partition Z
MNARz model, Bivariate Gaussian model
cluster overlap: ∆µ = |µ1 − µ2| varies.
difference of percentage of NA between the 2 clusters: ∆perc varies.

0.25

0.50

0.75

1 2 3
Δµ

AR
I

Δperc

0
10
20
30

Big overlap

Adjusted 
Rank Index 
to compare 
two partitions 

Small 
overlap
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MNARz from every angle

(3) MNARz models interpreted as MAR

X obs =

 ? 2.6 5
blue 1.9 4
red 2.3 ?

 , M =

 1 0 0
0 0 0
0 0 1


X̃ obs =

 ? 2.6 5 1 0 0
blue 1.9 4 0 0 0
red 2.3 ? 0 0 1

 .

Proposition 1: in terms of maximum likelihood

MLE associated to X̃ obs under MAR model
⇔ MLE associated to X obs under MNARz model.
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Identifiability results

Previous works: [Teicher, 1963], [Allman et al., 2009] (without NA),
[Miao et al., 2016] (for MNAR data).

Proposition 2: identifiability for continuous and count data
Assume

1 The marginal mixture
∑K

k=1 πk fk(xi ; θk) is identifiable

2 There exists a total ordering � of Fj ×R, for j ∈ {1, . . . , d} fixed,
where Fj = {f1j , . . . , fKj} and R = {ρ1, . . . , ρK}.

The mixture model with any MNAR∗ is identifiable.

Proposition 3: identifiability for categorical data
Assume dcat ≥ 2dlog2 Ke+ 1 and fk(·; θk) =

∏d
j=1 fkj(· ; θkj)

X The mixture model with MNARz is identifiable.
7 The mixture model with any MNARx∗ is not identifiable.

For mixed data: result follows from Proposition 2 and 3.

Identifiability up to a label swapping.
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EM algorithm: feasible computations ?

The expected complete likelihood knowing the observed data and a
current value of the parameters is decomposed into 2 parts

Q(θ, φ, π; θr , φr , πr ) = E[Lfull(θ, φ, π;X ,Z ,M)|X obs
i ,Mi ; θ

r , φr , πr ]

MNARz : needs some computations but still simple.

P(Mij = 1 | Xi ,Zik = 1;φ) = ρ(αk) (⊥⊥X )

EM algorithm for Gaussian data,

EM for categorical data.

MNARx∗ : needs approximations

P(Mij = 1 | Xi ,Zik = 1;φ) = ρ(αkj + βkjXij) (not⊥⊥X )

(xmis
i | xobs

i , zik = 1,Mi ) not classical if Logit link.

No closed forms.
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SEM algorithm for MNARx∗

SEM easier? random drawing instead of expectation

SE-step: draw the missing data

((Xmis
i )r+1,Z r+1

i ) ∼ (. | X obs
i ,Mi ; θ

r , φr , πr )

M-step: for k = 1, . . . ,K , compute πr+1
k , µr+1

k ,Σr+1
k , φr+1.

Use of One-Gibbs and Probit link for the SE-step.

EM SEM
Gaussian Categorical Gaussian Categorical

MNARz
MNARz j

X X X X

MNARx∗ no closed form not ident.
X

(Probit)
not ident.
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SEM algorithm for MNARx∗

SEM easier? random drawing instead of expectation

SE-step: draw the missing data

((Xmis
i )r+1,Z r+1

i ) ∼ (. | X obs
i ,Mi ; θ

r , φr , πr )

M-step: for k = 1, . . . ,K , compute πr+1
k , µr+1

k ,Σr+1
k , φr+1.

Use of One-Gibbs and Probit link for the SE-step.

EM SEM
Gaussian Categorical Gaussian Categorical

MNARz
MNARz j

X X X X

MNARx∗ no closed form not ident.
X

(Probit)
not ident.
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Results on real data

41 mixed variables containing missing values assumed to be MNARz .

Cluster the patients into 3 groups.

Representation with FactoMineR [Husson et al., 2016].
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Visit our website !

https://rmisstastic.netlify.app/

Imke Mayer, Julie Josse, Nicholas Tierney and Nathalie Vialaneix and
many other contributors
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Conclusion

Goal: propose methods to handle heterogeneous and not-MCAR
missing data motivated by real-world problems.

Mechanism Data type

Low rank model with fixed effect self-masked MNAR continuous
Low rank model with random effect MNAR continuous

Online linear regression SGD heterogeneous MCAR mixed
Model-based clustering MNAR mixed

Future work

Put the methods into production: better implementations,
R-packages, methods to automate the choice of
hyperparameters.

Semi-supervised models.
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Thanks for your attention!
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Classical methods

The most popular

Mean imputation :

Bad for estimation and imputation.
Good for prediction [Josse et al., 2019].

30 40 50
Age

20

30

40

50

60

In
co

m
e

Model-based methods : model for (Xobs,Xmis) or (Xobs|Xmis) e.g.

for Gaussian data (Amelia), or nonparametric (missForest,MIWAE)

[Honaker et al., 2011, ?, Mattei and Frellsen, 2019]

Low-rank methods : (softImpute, imputePCA)[Hastie et al., 2015, Josse et al., 2016a]

Multiple imputation to reflect the variability

XNA

X̂1

X̂2

X̂M

A(X̂1)

A(X̂2)

A(X̂M )

Result

Impute

Analyze

Combine

(mice) [Buuren and Groothuis-Oudshoorn, 2010]
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Classical methods

EM algorithm written for M(C)AR data

Estimate the parameter θ by modifying the estimation process.

Particularly adapted for Gaussian data.

[Dempster et al., 1977, Ibrahim, 1990]

Naive imputation + debiasing

Goal: apply an algorithm A to the case with missing values.

Naively impute the missing values, get X̃ ,

Adapt algorithm A to account for the error and apply this
debiased version to the complete dataset X̃ .

For Lasso, SGD [Loh and Wainwright, 2011, Ma and Needell, 2018]
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Classical methods

Method
Simple to

Imputation
Confidence

Main drawbacks
implement intervals

Single X single 7
biased estimates if

imputation too simple imputation

Multiple X multiple X combining results
imputation can be delicate

EM 7 not directly
can be specific algorithm for

obtained each statistical model

Naive imp. X not the goal 7
debiasing

+ debiasing each algorithm
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How to generate missing values?

Why? For numerical experiments!

Ambiguity on the missing-data mechanism definitions: realised or
everywhere Seaman et al., 2013

Two ways for generating M(N)AR missing values. For MAR:

Realised mechanism: the observations are not i.i.d. (not classical)

All variables can contain missing values!
We generate missing values in X1 using a logistic model depending on the
variables (X2,X3) (thus the missingness depends on the observed values).
And do the same for X2 and X1.
See the implementation in R in R-miss-tastic

Everywhere mechanism: the observations are i.i.d. (more canonical)

In a dataset of 3 variables, we choose at least one variable which is always
observed.
See the implementation in Python in R-miss-tastic

Still ambiguities to generate the missing values. Rows which contain only NA, ...
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Low-rank model with fixed effects:
identifiability?

Identifiability of the parameter Θ?

Result follows from Miao et al., Identifiability of normal and normal
mixture models with nonignorable missing data, 2016?

Theorem 1 [Miao et al., 2016]

Under the following model:

Gaussian data: X ∼ N (µ, σ2),

self-masked MNAR: P(M = 1|X ) = ρ(φ1 + φ2X ), with ρ the probit
link.

We have the identifiability of the parameters µ, σ, φ1, φ2.

Ensure that it scales with the multidimensional case (several MNAR
variables);

In the paper, we have assumed a logit link: in this case, identifiability of
the parameters if the sign of φ2 is known;

Condition: the left tail decay rate of F is not exponential, i.e.
∀δ > 0, limz→−∞

F (z)

e−δz
= 0 or +∞.

In practice: the logit link very closed to the probit link.
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Low-rank model with fixed effects: E-step

We minimize the negative log-likelihood

Q(Θ, φ|Θ̂(t), φ̂(t)) = −
n∑

i=1

p∑
j=1

C
Mij

1 + C
1−Mij

2

C1 = log(f (Xij ,Mij ; Θij , φj))

C2 =

∫
log(f (Xij ,Mij ; Θij , φj))︸ ︷︷ ︸

∝ X 2
ij

f (Xij |Mij ; Θ̂
(t)
ij , φ̂

(t)
j )︸ ︷︷ ︸

∝Gaussian distribution × Logit distribution

dXij

Consider Probit distribution? and use a latent variable (as for the
clustering with MNAR data)?

Direct extension to the case where the entries of X are not
independent? with more computations
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Low-rank model with fixed effects: Monte
Carlo and SIR algorithms

Q̂ij(Θ, φ|Θ̂(t), φ̂j
(t)

) = − 1

Ns

Ns∑
k=1

log(f (v k
ij ; Θij)) + log(f (Mij |v k

ij ;φj)),

v k
ij =

{
Xij if Mij = 1,
zkij otherwise,

with zkij ∼ p
(
Xij ; Θ̂

(t)
ij

)
p
(
Mij |Xij ; φ̂

(t)
j

)
= g(Xij).

How to draw zkij ?

Algorithm 2 SIR

Sampling: a sample x1, . . . , xM ∼ N (Θ
(t)
ij , σ

2).
Importance: compute the weights

ω(xm) =
g(xm)

ϕ
Θ

(t)
ij ,σ

2 (xm)
, for m = 1, . . . ,M,

with ϕ the density function of a Gaussian variable.
Resampling: draw z from the original sample x1, . . . , xM with probabil-
ity proportional to ω(x1), . . . , ω(xM).
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Low-rank model with fixed effects:
computational aspects

Computational complexity of the algorithms
For 1 iteration and oracle parameter tuning

softImpute (SVD) Our method 1 by modelling MNAR data

O ((1− pNA)ndr)
[Mazumder et al., 2010]

O

NSIRpNAnd︸ ︷︷ ︸
E−step

+ (1− pNA)ndr︸ ︷︷ ︸
softImpute

+ d3 + nd2︸ ︷︷ ︸
GLM


pNA: proportion of missing values

r : rank of the low-rank matrix.

NSIR: number of SIR drawings.

For us: complexity of GLM is problematic.

In practice: if NSIR is a big constant...

Solution: implementation in C? Alternative algorithm for the
E-step?
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Low rank models: hyperparameters

Noise level: use the residual sum of squares divided by the number
of observations minus the number of estimated parameters as
suggested by [Josse et al., 2016b], in complete case

σ̂2 =
‖X −

∑r
l=1 uldlvl‖2

2

nd − nr − rd + r2
,

where ul , vl and dl are the singular vectors and the singular values
from the SVD of X .

Rank of X , r : use a cross-validation for M(C)AR data
[Josse and Husson, 2012].

Regularization parameter (for the fixed effects): cross-validation for
M(C)AR data.
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Issue for the cross-validation with MNAR data

We want to choose λ the regularization parameter in

Θ̂ ∈ argminΘ‖(1−M)� (X −Θ)‖2 + λ‖Θ‖?,

Gridsearch for λ: [λ1, . . . , λL].

For λl (do this several times for the same λ)

Introduce new missing data in X
Split your dataset in 2 datasets: X (1) and X (2).
Apply softImpute on X (1) with λ1 and get Θ̂(1).
Impute X (2) with Θ̂(1) and compute the imputation error on X (2).

It is costly.

For M(N)AR data : introduce missing values which have the same

mechanism than the true missing values is not an easy task.
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Prediction task for the Traumabase dataset

Model Mask MAR
soft mimi soft soft PCA mean

error 12.5 16.0 15.8 14.8 13.6 13.0
sd 3.3 2.8 4.9 5.0 3.2 2.1
AUC 85.4 83.9 84.6 84.6 85.5 85.2
sd 1.6 1.7 1.8 2.0 1.4 2.2
acc 79.5 77.8 77.6 78.6 79.9 80.7
sd 5.0 3.2 5.0 5.2 3.4 3.1
pre 47.5 45.0 45.1 46.5 45.2 48.7
sd 6.7 4.2 8.2 8.3 5.9 5.0
sen 76.5 78.1 78.2 77.4 72.4 76.0
sd 6.1 3.4 5.7 5.4 3.2 4.5
spe 80.2 77.7 77.4 78.9 80.8 81.7
sd 7.2 4.4 7.2 7.3 4.6 4.6

By using random forest for the classification. Error corresponds to the validation
error. AUC is the area under ROC; the accuracy (acc) is the number of true positive
plus true negative divided by the total number of observations; the sensitivity (sen) is
defined as the true positive rate; specificity (spe) as the true negative rate; the
precision (pre) is the number of true positive over all positive predictions.

l(ẑ, z) =
1

n

n∑
i=1

w01{zi=1,ẑi=0} + w11{zi=0,ẑi=1}, validation error

where w0 and w1 are the weights for the cost of false negative and false positive
respectively, s.t. w0 + w1 = 1 and ω0 = 5ω1.
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PPCA: the assumptions in practice

Jester dataset: 5000 users who rated jokes, with 27% of missing values.
A neutron walks into a bar and orders a drink. ”How much do I owe you?” the neutron asks. The

bartender replies, ”for you, no charge.”

1 Fully PPCA model: any user preference (variable) can be expressed
as a linear combination of latent variables. The first latent variable opposes

individuals who like jokes about physics but dislike jokes about sexuality, and conversely.

2 Mechanism assumption:

self-masked MNAR: users only rate jokes they like or dislike strongly or might be

ashamed to assume their taste for sexual jokes.

pivot variables: a user’s non-response for the sexual joke given all
jokes may depend on the scores of the sexual and physical jokes but
not on the scores of the musical and computer jokes.

3 How to select the r pivot variables? (MCAR or observed)

Naive solution: variables with the lowest missing rate.
Discuss with experts.
Select a bigger set and computing the final estimator with the
median of the estimators over all possible combinations (costly).
Cross-validation? (costly)
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PPCA: no exogeneity

X.2 = B2→1,3[0] + B2→1,3[1]X.1 + B2→1,3[3]X.3 + ζ

E[ζ|X.1,X.3] 6= 0 : the linear regression of X.2 on X.1,X.3 gives biased

estimates.

In practice: it works well (simulations for different noise levels).

How to handle a high noise level? Estimate the coefficients with
other methods than linear regression.

Instrumental variable regression (used for example in econometrics).

The covariables are split in two parts:

one part which is not correlated to ζ (it is called the instrumental
variable, which has to be correlated with the covariables),
one part which is correlated to ζ → new noise.
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Low rank methods: computational cost

Method
r = 2, p = 10, n = 1000
35% MNAR values
in 7 variables

r = 5, p = 50, n = 1000
20% MNAR values
in 20 variables

MNAR algebraic 0,1 s
11 min 48 s
(1260 aggregations)

SoftMAR 5,5 s 28 s
EMMAR 50,8 s 2 min 9 s
Param 5 h 15 min not evaluated
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SGD: how to debiase the gradient

Our strategy
Online-streaming: for a new observation (XNA

k: , yk)

Imputing the missing values by 0.

X̃k: = XNA
k: �Mk: = Xk: �Mk: imputed covariates

Using a debiased gradient for the averaged SGD:
Find g̃k(βk) such that E [g̃k(βk−1) | Fk−1] = ∇R(βk−1)

Fk−1 = σ(X1:, y1,M1: . . . ,Xk−1:, yk−1,Mk−1:)

∇R(βk−1) = E(Xk:,yk )[Xk:(X
T
k:βk−1 − yk)]

No access to Xk:, only to X̃k:.

Another source of randomness: E = E(Xk:,yk ),Mk:

indep
= E(Xk:,yk )EMk:

EMk: |Fk−1  EMk:

Mask at step k independent from the previous constructed iterate.
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SGD: how to debiase the gradient

EMk:

[
X̃k:

]
= EMk:


δk1Xk1

...
δkdXkd


 =

p1Xk1

...
pdXkd


Thus

EMk:

[
P−1X̃k:

]
:=

p−1
1

. . .

p−1
d


p1Xk1

...
pdXkd

 = Xk:

One obtains

g̃k(βk−1) = P−1X̃k:

(
X̃T

k:P
−1βk−1 − yk

)
− (I− P)P−2diag

(
X̃k:X̃

T
k:

)
βk−1.
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SGD: technical lemmas

Goal: establish a convergence rate.

Assumptions on the data: (Xk:, yk) ∈ Rd × R i.i.d., E[‖Xk:‖2] and E[y 2
k ]

finite, H := E(Xk:,yk )[Xk:X
T
k: ] invertible.

Lemma: noise induced by the imputation by 0 is structured
(g̃k (β?))k with β? is Fk−measurable and ∀k ≥ 0,

E[g̃k (β?) | Fk−1] = 0 a.s.

E[‖g̃k (β?)‖2 | Fk−1] is a.s. finite.

E[g̃k (β?)g̃k (β?)T ] 4 C(β?) = c(β?)H.

Lemma: (g̃k(β?))k are a.s. co-coercive
For any k,

g̃k is Lk,D -Lipschitz

there exists a random primitive function f̃k which is a.s. convex
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SGD: what impact of missing values ?

We do better than discarding all observations which contain
missing values: Example in the homogeneous case with p the proportion of
being observed.

keeping only the complete observations, any algorithm:

number of complete observations kco ∼ B(k, pd).

statistical lower bound: Var(εk )d
kco

.

in expectation, lower bound on the risk larger than Var(εk )d

kpd
.

keeping all the observations, averaged SGD: upper bound

O
(

Var(εk )d

kp2 + C(X ,β?)

kp3

)
.

Our strategy has an upper-bound pd−3 smaller than the lower bound of
any algorithm relying only on the complete observations.
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SGD: no result for empirical risk

Finite-sample setting: n is fixed

True risk: same convergence rate holds for only one epoch (we
can use only once each data).
Otherwise: mask at step k independent from the previous
constructed iterate ⇒ bias in the gradient.

Empirical risk: βn
? = argminβ∈Rd

{
Rn(β) := 1

n

∑n
i=1 fi (β)

}
How to choose the k-th obstervation ?

k uniformly at random ⇒ we use a data several times.
k not chosen uniformly at random ⇒ sampling not uniform and bias
in the gradient.

Implications:

No unbiased gradients for the empirical risk so far.

Keep in mind: empirical risk is in any case not observed.
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SGD: result with estimated missing
probabilities

Finite-sample setting: n is fixed

Algorithm and main result: requirement of (pj)j=1,...,d .
→ estimator β̄k

In practice: estimated missing probabilities (p̂j)j=1,...,d

→ estimator ¯̂
βk . (finite-sample setting: first half of the data to evaluate

(p̂j), second half to build ¯̂βk).

Result with estimated missing probabilities (simplified
version)

Under additional assumptions of bounded iterates and strong convexity of

the risk, Algorithm 1 ensures that, for any k ≥ 0:

E
[
R( ¯̂βk)− R(β̄k)

]
= O(1/kp6

m),

with pm = minj∈{1,...,d} pj .
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Comparison with related work

Comparison with Ma et Needell [Ma and Needell, 2018]:

SGD with missing covariates for least-squares

µ-strongly convex problem

no averaged iterates

⇒ convergence rate of O( log n
µn ).

µ generally out of reach.

only homogeneous MCAR data.

main theorem mathematically invalid (empirical risk).
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SGD: only one pass
Only one pass!

SGD: how to debiase the gradient

Our strategy
Online-streaming: for a new observation (XNA

k: , yk)

Imputing the missing values by 0.

X̃k: = XNA
k: � Mk: = Xk: � Mk: imputed covariates

Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)

Fk�1 = �(X1:, y1, M1: . . . , Xk�1:, yk�1, Mk�1:)

rR(�k�1) = E(Xk:,yk )[Xk:(X
T
k:�k�1 � yk)]

No access to Xk:, only to X̃k:.

Another source of randomness: E = E(Xk:,yk ),Mk:

indep
= E(Xk:,yk )EMk:

EMk: |Fk�1  EMk:

Mask at step k independent from the previous constructed iterate.
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Xi :
i.i.d.∼ N (0,Σ), where Σ with uniform random eigenvectors and decreasing

eigenvalues, εi ∼ N (0, 1)

yi = Xi :β + εi , for β fixed

d = 10, 30% missing values.

AvSGD averaged iterates with a constant step size α = 1
2L

.

SGD[Ma and Needell, 2018] with iterates βk+1 = βk − αk g̃ik (βk ), and

decreasing step size αk = 1√
k+1

.

SGD cst with a constant step size α = 1
2L

.

L is considered to be known.
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SGD: only one pass

AvSGD averaged iterates with a constant step size α = 1
2L

.

SGD[Ma and Needell, 2018] with iterates βk+1 = βk − αk g̃ik (βk ), and

decreasing step size αk = 1√
k+1

.

SGD cst with a constant step size α = 1
2L

.

L is considered to be known.

Multiple passes (left): saturation.

One pass (right): saturation for SGD cst, O(n−1/2) for SGD, O(n−1) for
AvSGD.
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Advanced SGD: other mechanisms?
For MNAR or MAR data?

SGD: how to debiase the gradient

Our strategy
Online-streaming: for a new observation (XNA

k: , yk)

Imputing the missing values by 0.

X̃k: = XNA
k: � Mk: = Xk: � Mk: imputed covariates

Using a debiased gradient for the averaged SGD:
Find g̃k(�k) such that E [g̃k(�k�1) | Fk�1] = rR(�k�1)

Fk�1 = �(X1:, y1, M1: . . . , Xk�1:, yk�1, Mk�1:)

rR(�k�1) = E(Xk:,yk )[Xk:(X
T
k:�k�1 � yk)]

No access to Xk:, only to X̃k:.

Another source of randomness: E = E(Xk:,yk ),Mk:

indep
= E(Xk:,yk )EMk:

EMk: |Fk�1  EMk:

Mask at step k independent from the previous constructed iterate.
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Figure: 1 pass, assuming MAR data

88/65



Advanced SGD: other loss functions?

Logit loss-function ? No solution yet.

yi ∈ {1,−1},
Logit loss: fi (β) = 1

n

∑
i log(1 + exp(−yiXT

i β))

Gradient: ∇fi (β) = −yiXi

1+exp(yiXT
i β)

Approximation of the gradient −yiXi

1+exp(yiXT
i β)
≈ −yiXi

2 +
XT
i βXi

4

Debiasing the gradient?

Partially debiasing: −yiXi

p(1+exp(yiXT
i β))

Debiasing the approximation of the gradient

Use of the algorithm of Bach and Moulines [Bach and Moulines, 2013] ?

βk = βk−1 − α(∇fk(β̄k−1) + Hk(β̄k−1)(βk−1 − β̄k−1)
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Advanced SGD: polynomial features

We know how to debiase the gradient.

Encouraging results on data.

No theoretical results

d = 2. Accounting for the effects of X 2
k1, X 2

k2, Xk1Xk2.

augmented design matrix: (X:1|X:2|X:1X:2|X 2
:1|X 2

:2)T .

Debiased gradient: U�−1 � X̃k:X̃
T
k:βk − diag(U)�−1 � X̃k:yk

U =


p1 p1p2 p1p2 p1 p1p2

p1p2 p2 p1p2 p1p2 p2

p1p2 p1p2 p1p2 p1p2 p1p2

p1 p1p2 p1p2 p1 p1p2

p1p2 p2 p1p2 p1p2 p2

 ,

U�−1: formed of the inverse coefficients of U.
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Advanced SGD: polynomial features

d = 2. Accounting for the effects of X 2
k1, X 2

k2, Xk1Xk2.

100 101 102 103 104 105

k

10 4

10 3

10 2
R n

(
k)

R n
(

)

AvSGD

Figure: Empirical excess risk (Rn(βk)− Rn(β?)) given n for synthetic data
(n = 105, d = 10) when the model accounts mixed effects.
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Advanced SGD: polynomial features

For real data (Superconductivity dataset) 3 algorithms to compare :

the averaged SGD on complete data (blue)

the proposed debiased averaged SGD (orange)

the averaged SGD run on imputed-by-0 data without any debiasing
(green)

100 101 102

k (one epoch)

2 × 10 1

3 × 10 1

4 × 10 1

R n
(

k)
R n

(
* )

AvSGD (complete data)
AvSGD (NA)
AvSGD (NA, imput0)

Figure: Empirical excess risk (Rn(βk)− Rn(β?)) given n for the
superconductivity dataset (n = 21263) (containing 81 initial features) and
d = 3403 with polynomial features of degree 2.
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Advanced SGD: missing-data patterns can be
dependent

In our setting: independent missing-data patterns

M.j ⊥⊥ M.j′ , j 6= j ′

M = (δij)1≤i≤n,1≤j≤d with δij ∼ B(pj)

Dependent missing-data patterns

g̃k(β) := (W � (X̃k:X̃
T
k: ))β − ykP

−1X̃k:

with W ∈ Rd×d , and Wij := 1/E[δkiδkj ] for 1 ≤ i , j ≤ d
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Clustering: computations for the EM
algorithm

Q(θ, φ, π; θr , φr , πr ) = Qx(θ, π; θr , φr , πr ) + Qc(φ; θr , φr , πr )

Qx(θ, π; θr , φr , πr ) =
n∑

i=1

K∑
k=1

(τik)r log(πk) +
n∑

i=1

K∑
k=1

(τik)rE r
ix(θ)

QM(φ; θr , φr , πr ) =
n∑

i=1

K∑
k=1

(τik)rE r
iM(φ)

Law of xmis
i given (xobs

i , zik = 1,Mi ) ?

Computation of the expectation over this law of
log(P(Mi | xi , zik = 1;φ)) (for E r

iM(φ))?

(τik)r : Computation of P(Mi | xobs
i , zik = 1;φr ) ?
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Clustering: EM algorithm for MNARz and
MNARz j models

MNARz , MNARzj : needs some computations but still simple.

P(Mij = 1 | xi , zik = 1;φ) = ρ(αkj) (⊥⊥X )

Gaussian case for MNARz and MNARz j(
xmis
i | xobs

i , zik = 1; θr
)
∼ N

(
(µ̃mis

ik )r , (Σ̃mis
ik )r

)
.

E-step : for k = 1, . . . ,K and i = 1, . . . , n, compute

(µ̃mis
ik )r , (Σ̃mis

ik )r , (τik)r .

M-step : for k = 1, . . . ,K , compute πr+1
k , µr+1

k ,Σr+1
k For φr+1:

maximization of QM(φ; θr , φr , πr ) over φ with a
Newton-Raphson algorithm (classical procedure for link
functions of interest)

An EM algorithm can also be easily derived for categorical data
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Clustering: EM algorithm for MNARz and
MNARz j models

MNARx∗ : needs approximations

P(Mij = 1 | xi , zik = 1; ) = ρ(αkj + βkjxij) (not⊥⊥ x)

Gaussian case for MNARx∗
(xmis

i | xobs
i , zik = 1,Mi ):

7 not classical if ρ is Logit, X truncated Gaussian distribution if
ρ is Probit

No closed forms of E r
iM(φ) and of (τik)r .
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Clustering: SEM algorithm for MNARx∗

Gaussian data:

SE-step : draw the missing data

((xmis
i )r+1, z r+1

i ) ∼ (. | xobs
i ,Mi ; θ

r , φr , πr )

Use of One-Gibbs sampling :

(xmis
i )r+1 ∼ (· | xobs

i , z ri , ci ; θ
r , φr ):

7 not classical if ρ is Logit,

X truncated Gaussian distribution if ρ is Probit

z r+1
i ∼ (· | x r+1

i , ci ; θ
r , φr , πr ): draw the membership k of z r+1

i from
the multinomial distribution

Let X r+1 = (x r+1
1 | . . . |x r+1

n ), Z r+1 = (z r+1
1 | . . . |z r+1

n ) be the
imputed matrix and the partition

M-step : for k = 1, . . . ,K , compute πr+1
k , µr+1

k ,Σr+1
k , φr+1.
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Clustering: identifiability for categorical data

fk Gaussian Poisson
ρk Probit Logit Probit Logit

MNARz jxk

MNARxkz

MNARxk

X generic ident. X generic ident.

MNARxz j

MNARxz

MNARx

MNARz

MNARz j

X X X X

Generic identifiability: all not-identifiable parameter choices lie within a
proper subvariety, and thus form a set of Lebesgue zero measure
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Computational comments for all the works

What is costly? MNAR!

Low-rank model with fixed effects modelling the missing-data
mechanism: Monte Carlo, SIR algorithm

Low-rank model with random effects: number of aggregations for
the combinations of the pivot variables ⇔ number of linear
regression to be performed

SEM algorithm for MNARx∗: we use a One-Gibbs sampling,
truncated Gaussian (difficulty of drawing)

Solutions?

Consider the method adding the mask ' same cost than MAR data.

simple MNAR like MNARz for the model-based clustering.

Better implementations.
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Traumabase dataset

Death
Death_30d

Decompressive.craniectomy
EVD

Improv.anomaly.osmo
lesion.class
lesion.grade

majorExtracranial
Neurosurgery.day0

Osmotherapy
TBI

TBI_Death
TBI_Death_30d
Tranexamic.acid

Trauma.center
Vasopressor.therapy

ISS
AIS.external

AIS.face
AIS.head

Pupil.anomaly
Osmotherapy.ph

Pupil.anomaly.ph
GCS.init

IGS.II
Cardiac.arrest.ph

Activation.HS.procedure
Anticoagulant.therapy

Antiplatelet.therapy
FiO2

GCS.motor.init
SpO2.ph.min

SBP.ph.min
DBP.ph.min
HR.ph.max

SBP.ph
HR.ph

DBP.ph
Cristalloid.volume

Shock.index.ph
Colloid.volume
HemoCue.init

Delta.hemoCue
GCS

GCS.motor
TCD.PI.max

IICP

0 20 40 60
% Missing

V
ar

ia
bl

es
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